IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5013-d1181758.html
   My bibliography  Save this article

Molecular Simulation Techniques as Applied to Silica and Carbon-Based Adsorbents for Carbon Capture

Author

Listed:
  • Basil Wadi

    (Chemical Engineering Department, University of Ottawa, Ottawa, ON K1N 6N5, Canada
    Centre for Climate and Environmental Protection, Cranfield University, Bedford MK43 0AL, UK)

  • Ayub Golmakani

    (Centre for Climate and Environmental Protection, Cranfield University, Bedford MK43 0AL, UK)

  • Tohid N.Borhani

    (Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK)

  • Vasilije Manovic

    (Centre for Climate and Environmental Protection, Cranfield University, Bedford MK43 0AL, UK)

  • Seyed Ali Nabavi

    (Centre for Climate and Environmental Protection, Cranfield University, Bedford MK43 0AL, UK)

Abstract

There has been ongoing interest in research to mitigate climate change through carbon capture (CC) by adsorption. This guideline is meant to introduce computational chemistry techniques in CC by applying them to mesoporous structures and disordered morphologies. The molecular simulation techniques presented here use examples of literature studies on silica and carbon-based adsorbents. An initial summary of molecular simulation techniques and concepts is first presented. This is followed by a section on molecular simulation applications in mesoporous amorphous silica, both functionalized and not. Novel strategies to validate and output useful results are discussed, specifically when modelling chemisorption. The use of computational chemistry to build upon experimental results is reviewed, and a similar summation is presented for carbon-based adsorbents. The final section provides a short review of computational chemistry methods in novel applications and highlights potential complications. Computational chemistry techniques provide a streamlined method of gathering data across a range of conditions. Alongside experimental studies, these techniques can provide valuable information on underlying molecular mechanisms. This paper aims to be a starting point for navigating these numerical methods by providing an initial understanding of how these techniques can be applied to carbon capture while clarifying the current and inherent limitations present.

Suggested Citation

  • Basil Wadi & Ayub Golmakani & Tohid N.Borhani & Vasilije Manovic & Seyed Ali Nabavi, 2023. "Molecular Simulation Techniques as Applied to Silica and Carbon-Based Adsorbents for Carbon Capture," Energies, MDPI, vol. 16(13), pages 1-32, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5013-:d:1181758
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Lin, Meng & Du, Yanping & Lian, Yahui, 2018. "Mathematical modeling and numerical investigation of carbon capture by adsorption: Literature review and case study," Applied Energy, Elsevier, vol. 221(C), pages 437-449.
    2. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    2. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
    3. Wilkes, Mathew Dennis & Brown, Solomon, 2022. "Flexible CO2 capture for open-cycle gas turbines via vacuum-pressure swing adsorption: A model-based assessment," Energy, Elsevier, vol. 250(C).
    4. Piotr Sakiewicz & Marcin Lutyński & Jakub Sobieraj & Krzysztof Piotrowski & Francesco Miccio & Sylwester Kalisz, 2022. "Adsorption of CO 2 on In Situ Functionalized Straw Burning Ashes—An Innovative, Circular Economy-Based Concept for Limitation of Industrial-Scale Greenhouse Gas Emission," Energies, MDPI, vol. 15(4), pages 1-28, February.
    5. Guo, Zhihao & Deng, Shuai & Zhu, Yu & Zhao, Li & Yuan, Xiangzhou & Li, Shuangjun & Chen, Lijin, 2020. "Non-equilibrium thermodynamic analysis of adsorption carbon capture: Contributors, mechanisms and verification of entropy generation," Energy, Elsevier, vol. 208(C).
    6. Myers, T.G. & Font, F. & Hennessy, M.G., 2020. "Mathematical modelling of carbon capture in a packed column by adsorption," Applied Energy, Elsevier, vol. 278(C).
    7. Qasem, Naef A.A. & Ben-Mansour, Rached, 2018. "Adsorption breakthrough and cycling stability of carbon dioxide separation from CO2/N2/H2O mixture under ambient conditions using 13X and Mg-MOF-74," Applied Energy, Elsevier, vol. 230(C), pages 1093-1107.
    8. Yuta Sakanaka & Shotaro Hiraide & Iori Sugawara & Hajime Uematsu & Shogo Kawaguchi & Minoru T. Miyahara & Satoshi Watanabe, 2023. "Generalised analytical method unravels framework-dependent kinetics of adsorption-induced structural transition in flexible metal–organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    10. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    11. Qasem, Naef A.A. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "An efficient CO2 adsorptive storage using MOF-5 and MOF-177," Applied Energy, Elsevier, vol. 210(C), pages 317-326.
    12. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2017. "Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations," Applied Energy, Elsevier, vol. 204(C), pages 403-412.
    13. Xu, Weicong & Deng, Shuai & Su, Wen & Zhang, Ying & Zhao, Li & Yu, Zhixin, 2018. "How to approach Carnot cycle via zeotropic working fluid: Research methodology and case study," Energy, Elsevier, vol. 144(C), pages 576-586.
    14. Amna Abdeljaoued & Nausika Querejeta & Inés Durán & Noelia Álvarez-Gutiérrez & Covadonga Pevida & Mohamed Hachemi Chahbani, 2018. "Preparation and Evaluation of a Coconut Shell-Based Activated Carbon for CO 2 /CH 4 Separation," Energies, MDPI, vol. 11(7), pages 1-14, July.
    15. de Kleijne, Kiane & James, Jebin & Hanssen, Steef V. & van Zelm, Rosalie, 2020. "Environmental benefits of urea production from basic oxygen furnace gas," Applied Energy, Elsevier, vol. 270(C).
    16. Khakpoor, Nima & Mostafavi, Ehsan & Mahinpey, Nader & De la Hoz Siegler, Hector, 2019. "Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion," Energy, Elsevier, vol. 169(C), pages 329-337.
    17. Cheng, Jun & Wang, Yali & Liu, Niu & Hou, Wen & Zhou, Junhu, 2020. "Enhanced CO2 selectivity of mixed matrix membranes with carbonized Zn/Co zeolitic imidazolate frameworks," Applied Energy, Elsevier, vol. 272(C).
    18. Xu, Weicong & Deng, Shuai & Zhao, Li & Zhang, Yue & Li, Shuangjun, 2019. "Performance analysis on novel thermodynamic cycle under the guidance of 3D construction method," Applied Energy, Elsevier, vol. 250(C), pages 478-492.
    19. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2016. "Synthesis of a highly efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture," Applied Energy, Elsevier, vol. 183(C), pages 1418-1427.
    20. Zhao, Ruikai & Zhao, Li & Deng, Shuai & Song, Chunfeng & He, Junnan & Shao, Yawei & Li, Shuangjun, 2017. "A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle," Energy, Elsevier, vol. 137(C), pages 495-509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5013-:d:1181758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.