IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4420-d1159873.html
   My bibliography  Save this article

Research on Unsteady Inverse Heat Conduction Based on Dynamic Matrix Control

Author

Listed:
  • Weichao Huang

    (Shannxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China)

  • Jiahao Li

    (School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Ding Liu

    (School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China)

Abstract

For the unsteady multi-boundary inverse heat conduction problem, a real-time solution method for boundary heat flux based on dynamic matrix control is proposed in the paper. The method solves the heat flux at the boundary in real-time by measuring the temperature information at the measurement points of the heat transfer system. A two-dimensional direct heat conduction model of the heat transfer system is established in the paper, and is solved by the finite difference method to obtain the temperature information of the measurement points under any heat flux boundary. Then, the correspondence between the heat flux of boundary and the temperature information is presented by means of a step-response model. The regularization parameters are introduced into the method to improve the stability of the inversion process, and the effect of real-time inversion on the heat flux of the boundary is achieved through rolling optimization. The experimental results show that the proposed method can achieve real-time inversion of the heat fluxes of the two-dimensional boundary with good accuracy.

Suggested Citation

  • Weichao Huang & Jiahao Li & Ding Liu, 2023. "Research on Unsteady Inverse Heat Conduction Based on Dynamic Matrix Control," Energies, MDPI, vol. 16(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4420-:d:1159873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4420/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4420/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zilong & Zhang, Hua & Dou, Binlin & Huang, Huajie & Wu, Weidong & Wang, Zhiyun, 2017. "Experimental and numerical research of thermal stratification with a novel inlet in a dynamic hot water storage tank," Renewable Energy, Elsevier, vol. 111(C), pages 353-371.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piyatida Trinuruk & Papangkorn Jenyongsak & Somchai Wongwises, 2022. "Comparative Study of Inlet Structure and Obstacle Plate Designs Affecting the Temperature Stratification Characteristics," Energies, MDPI, vol. 15(6), pages 1-25, March.
    2. Lou, Wanruo & Xie, Baoshan & Aubril, Julien & Fan, Yilin & Luo, Lingai & Arrivé, Arnaud, 2023. "Optimized flow distributor for stabilized thermal stratification in a single-medium thermocline storage tank: A numerical and experimental study," Energy, Elsevier, vol. 263(PA).
    3. Kurşun, Burak & Ökten, Korhan, 2018. "Effect of rectangular hot water tank position and aspect ratio on thermal stratification enhancement," Renewable Energy, Elsevier, vol. 116(PA), pages 639-646.
    4. Kocijel, Lino & Mrzljak, Vedran & Glažar, Vladimir, 2020. "Numerical analysis of geometrical and process parameters influence on temperature stratification in a large volumetric heat storage tank," Energy, Elsevier, vol. 194(C).
    5. Rendall, Joseph & Abu-Heiba, Ahmad & Gluesenkamp, Kyle & Nawaz, Kashif & Worek, William & Elatar, Ahmed, 2021. "Nondimensional convection numbers modeling thermally stratified storage tanks: Richardson's number and hot-water tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Dzierwa, Piotr & Taler, Jan & Peret, Patryk & Taler, Dawid & Trojan, Marcin, 2022. "Transient CFD simulation of charging hot water tank," Energy, Elsevier, vol. 239(PC).
    7. Miguel A. Gómez & Sergio Chapela & Joaquín Collazo & José L. Míguez, 2019. "CFD Analysis of a Buffer Tank Redesigned with a Thermosyphon Concentrator Tube," Energies, MDPI, vol. 12(11), pages 1-17, June.
    8. Bai, Yakai & Wang, Zhifeng & Fan, Jianhua & Yang, Ming & Li, Xiaoxia & Chen, Longfei & Yuan, Guofeng & Yang, Junfeng, 2020. "Numerical and experimental study of an underground water pit for seasonal heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 487-508.
    9. Chandra, Yogender Pal & Matuska, Tomas, 2020. "Numerical prediction of the stratification performance in domestic hot water storage tanks," Renewable Energy, Elsevier, vol. 154(C), pages 1165-1179.
    10. María Gasque & Federico Ibáñez & Pablo González-Altozano, 2021. "Minimum Number of Experimental Data for the Thermal Characterization of a Hot Water Storage Tank," Energies, MDPI, vol. 14(16), pages 1-16, August.
    11. Agnieszka Malec & Tomasz Cholewa & Alicja Siuta-Olcha, 2021. "Influence of Cold Water Inlets and Obstacles on the Energy Efficiency of the Hot Water Production Process in a Hot Water Storage Tank," Energies, MDPI, vol. 14(20), pages 1-26, October.
    12. Kicsiny, Richárd, 2018. "Black-box model for solar storage tanks based on multiple linear regression," Renewable Energy, Elsevier, vol. 125(C), pages 857-865.
    13. Wang, Zilong & Zhu, Mengshuai & Zhang, Hua & Zhou, Ying & Sun, Xiangxin & Dou, Binlin & Wu, Weidong & Zhang, Guanhua & Jiang, Long, 2023. "Experimental and simulation study on the heat transfer mechanism and heat storage performance of copper metal foam composite paraffin wax during melting process," Energy, Elsevier, vol. 272(C).
    14. Lihua Cao & Jingwen Yu & Xifeng Liu & Zhanzhou Wang, 2024. "Evaluation Method and Analysis on Performance of Diffuser in Heat Storage Tank," Energies, MDPI, vol. 17(3), pages 1-15, January.
    15. De la Cruz-Loredo, Iván & Zinsmeister, Daniel & Licklederer, Thomas & Ugalde-Loo, Carlos E. & Morales, Daniel A. & Bastida, Héctor & Perić, Vedran S. & Saleem, Arslan, 2023. "Experimental validation of a hybrid 1-D multi-node model of a hot water thermal energy storage tank," Applied Energy, Elsevier, vol. 332(C).
    16. Liu, Baihong & Gao, Wenfeng & Zhang, Yougang & Ding, Xiang & Li, Qiong & Wang, Jinsong, 2023. "Effect of initial temperature of water in a solar hot water storage tank on the thermal stratification under the discharging mode," Renewable Energy, Elsevier, vol. 212(C), pages 994-1004.
    17. Jie Huang & Fei Xu & Zilong Wang & Hua Zhang, 2023. "An Experimental Investigation on the Performance of a Water Storage Tank with Sodium Acetate Trihydrate," Energies, MDPI, vol. 16(2), pages 1-14, January.
    18. Liang, Haobin & Liu, Liu & Zhong, Ziwen & Gan, Yixiang & Wu, Jian-Yong & Niu, Jianlei, 2022. "Towards idealized thermal stratification in a novel phase change emulsion storage tank," Applied Energy, Elsevier, vol. 310(C).
    19. Li, Qiong & Huang, Xiaoqiao & Tai, Yonghang & Gao, Wenfeng & Wenxian, L. & Liu, Wuming, 2021. "Thermal stratification in a solar hot water storage tank with mantle heat exchanger," Renewable Energy, Elsevier, vol. 173(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4420-:d:1159873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.