IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4007-d1143427.html
   My bibliography  Save this article

Toxicity of Perovskite Solar Cells

Author

Listed:
  • Ziyao Yue

    (School of New Energy, Nanjing University of Science and Technology, Jiangyin 214443, China)

  • Hu Guo

    (School of New Energy, Nanjing University of Science and Technology, Jiangyin 214443, China)

  • Yuanhang Cheng

    (School of New Energy, Nanjing University of Science and Technology, Jiangyin 214443, China)

Abstract

Over the past decade, there has been significant and rapid developments in organic-inorganic hybrid perovskite solar cells (PVSCs). Despite the fact that the power conversion efficiency (PCE) of PVSCs has increased from 3.8% to 25.8%, approaching that of commercial single crystalline Si solar cells, the market is still dominated by Si-based photovoltaic (PV) technology. This can be attributed to the challenges associated with upscaling PVSCs, improving device stability, and reducing the toxicity of PVSCs, which are hurdles in commercializing perovskite PV technologies. In particular, the toxicity due to lead leakage of PVSCs makes it difficult for them to enter the market. Hence, in this article, the structure and working principle of PVSCs are first summarized. Then, the toxicity of PVSCs is discussed, including the impacts of organic solvents and perovskite precursor materials on the health and environment. In this section, examples of advanced strategies for reducing the toxicity of PVSCs are also provided. Finally, challenges and a perspective for developing nontoxic PVSCs are given.

Suggested Citation

  • Ziyao Yue & Hu Guo & Yuanhang Cheng, 2023. "Toxicity of Perovskite Solar Cells," Energies, MDPI, vol. 16(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4007-:d:1143427
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4007/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4007/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shangshang Chen & Yehao Deng & Hangyu Gu & Shuang Xu & Shen Wang & Zhenhua Yu & Volker Blum & Jinsong Huang, 2020. "Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins," Nature Energy, Nature, vol. 5(12), pages 1003-1011, December.
    2. Xun Li & Fei Zhang & Haiying He & Joseph J. Berry & Kai Zhu & Tao Xu, 2020. "On-device lead sequestration for perovskite solar cells," Nature, Nature, vol. 578(7796), pages 555-558, February.
    3. Pengfei Sheng & Yaping He & Xiaohui Guo, 2017. "The impact of urbanization on energy consumption and efficiency," Energy & Environment, , vol. 28(7), pages 673-686, November.
    4. Mohammad Fazle Rabbi & József Popp & Domicián Máté & Sándor Kovács, 2022. "Energy Security and Energy Transition to Achieve Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-18, October.
    5. Changshun Chen & Jianxin Chen & Huchen Han & Lingfeng Chao & Jianfei Hu & Tingting Niu & He Dong & Songwang Yang & Yingdong Xia & Yonghua Chen & Wei Huang, 2022. "Perovskite solar cells based on screen-printed thin films," Nature, Nature, vol. 612(7939), pages 266-271, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Chen & Chengbin Fei & Shangshang Chen & Hangyu Gu & Xun Xiao & Jinsong Huang, 2021. "Recycling lead and transparent conductors from perovskite solar modules," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    3. Sakkarin Nonthapot & Tanawat Watchalaanun, 2023. "Effects of Deglobalization on Food and Energy Insecurity in the GMS Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 374-381, September.
    4. Ana Tereza Andrade Borba & Leonardo Jaime Machado Simões & Thamiles Rodrigues de Melo & Alex Álisson Bandeira Santos, 2024. "Techno-Economic Assessment of a Hybrid Renewable Energy System for a County in the State of Bahia," Energies, MDPI, vol. 17(3), pages 1-18, January.
    5. Sergey Zhironkin & Fares Abu-Abed & Elena Dotsenko, 2023. "The Development of Renewable Energy in Mineral Resource Clusters—The Case of the Siberian Federal District," Energies, MDPI, vol. 16(9), pages 1-28, April.
    6. Filip Fidanoski & Kiril Simeonovski & Violeta Cvetkoska, 2021. "Energy Efficiency in OECD Countries: A DEA Approach," Energies, MDPI, vol. 14(4), pages 1-21, February.
    7. Abdimalik Ali Warsame, 2022. "The Impact of Urbanization on Energy Demand: An Empirical Evidence from Somalia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 383-389.
    8. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.
    9. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Sabyasachi Tripathi, 2021. "Do macroeconomic factors promote urbanization? Evidence from BRICS countries," Asia-Pacific Journal of Regional Science, Springer, vol. 5(2), pages 397-426, June.
    11. Wang, Qiang & Lin, Jian & Zhou, Kan & Fan, Jie & Kwan, Mei-Po, 2020. "Does urbanization lead to less residential energy consumption? A comparative study of 136 countries," Energy, Elsevier, vol. 202(C).
    12. Adrian Tantau & Greta Marilena Puscasu & Silvia Elena Cristache & Cristina Alpopi & Laurentiu Fratila & Daniel Moise & Georgeta Narcisa Ciobotar, 2022. "A Deep Understanding of Romanian Attitude and Perception Regarding Nuclear Energy as Green Investment Promoted by the European Green Deal," Energies, MDPI, vol. 16(1), pages 1-14, December.
    13. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    14. Singh, Devesh, 2022. "Renewable energy, urban primacy, foreign direct investment, and value-added in European regions," Renewable Energy, Elsevier, vol. 186(C), pages 547-561.
    15. Feng, Yidai & Yuan, Huaxi & Liu, Yaobin, 2023. "The energy-saving effect in the new transformation of urbanization," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 41-59.
    16. Sai Liu & Yang Li & Ying Wang & Yuwei Du & Kin Man Yu & Hin-Lap Yip & Alex K. Y. Jen & Baoling Huang & Chi Yan Tso, 2024. "Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. M Krishnamoorthi & R Malayalamurthi, 2018. "Effect of exhaust gas recirculation and charge inlet temperature on performance, combustion, and emission characteristics of diesel engine with bael oil blends," Energy & Environment, , vol. 29(3), pages 372-391, May.
    18. George A Xydis & Katerina Kremastioti & Maria Panagiotidou, 2022. "Wind energy and the historic environment: A business-driven symbiosis approach," Energy & Environment, , vol. 33(3), pages 582-598, May.
    19. Muhammad Afzal & Sheikh Shoaib Ahmed & Mustansar Nawaz, 2018. "Macroeconomic Determinants of Urbanization in Pakistan," Growth, Asian Online Journal Publishing Group, vol. 5(1), pages 6-12.
    20. Agnieszka Kozera & Aldona Standar & Natalia Genstwa, 2023. "Are Most Polluted Regions Most Active in Energy Transition Processes? A Case Study of Polish Regions Acquiring EU Funds for Local Investments in Renewable Energy Sources," Energies, MDPI, vol. 16(22), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4007-:d:1143427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.