IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p258-d1015739.html
   My bibliography  Save this article

Soft Switched Current Fed Dual Active Bridge Isolated Bidirectional Series Resonant DC-DC Converter for Energy Storage Applications

Author

Listed:
  • Kiran Bathala

    (Electrical and Electronics Engineering Department, National Institute of Technology Karnataka, Surathkal 575025, India)

  • Dharavath Kishan

    (Electrical and Electronics Engineering Department, National Institute of Technology Karnataka, Surathkal 575025, India)

  • Nagendrappa Harischandrappa

    (Electrical and Electronics Engineering Department, National Institute of Technology Karnataka, Surathkal 575025, India)

Abstract

This paper proposes a high-frequency isolated current-fed dual active bridge bidirectional DC–DC series resonant converter with an inductive filter for energy storage applications, and a steady-state analysis of the converter is carried out. The performance of the proposed converter has been compared with a voltage-fed converter with a capacitive output filter. The proposed converter topology is operated in continuous conduction mode with zero circulation current (ZCC), less current stress and high efficiency. The conditions required for soft switching are determined, and it is found that the converter operates with soft switching of all switches for a wide variation in load and input voltage without loss of duty cycle. Current-fed converters are suitable for low-voltage renewable energy applications because of their inherent boosting capability. An inductive output filter is chosen to make the output current ideal for fast charging and high-power-density battery storage applications. Simple single-phase shift control is used to control the switches. The performance of the converter is studied using PSIM simulation software. These results are confirmed by an experiment on a 135 W converter on an OPAL-RT real-time simulator. The maximum efficiency obtained in simulation is 96.31%. Simulation and theoretical results are given in the comparison table for both forward and reverse modes of operation. A breakdown of the losses of this converter is also presented.

Suggested Citation

  • Kiran Bathala & Dharavath Kishan & Nagendrappa Harischandrappa, 2022. "Soft Switched Current Fed Dual Active Bridge Isolated Bidirectional Series Resonant DC-DC Converter for Energy Storage Applications," Energies, MDPI, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:258-:d:1015739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elkin Edilberto Henao-Bravo & Carlos Andrés Ramos-Paja & Andrés Julián Saavedra-Montes & Daniel González-Montoya & Julián Sierra-Pérez, 2020. "Design Method of Dual Active Bridge Converters for Photovoltaic Systems with High Voltage Gain," Energies, MDPI, vol. 13(7), pages 1-31, April.
    2. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    3. Jiawen Yang & Yu Zhang & Xinmi Wu, 2022. "Minimum Current Optimization of DBSRC Considering the Dead-Time Effect," Energies, MDPI, vol. 15(22), pages 1-16, November.
    4. Karthikeyan, V. & Gupta, Rajesh, 2017. "Light-load efficiency improvement by extending ZVS range in DAB-bidirectional DC-DC converter for energy storage applications," Energy, Elsevier, vol. 130(C), pages 15-21.
    5. Mohua Biswas & Shuvra Prokash Biswas & Md. Rabiul Islam & Md. Ashib Rahman & Kashem M. Muttaqi & S. M. Muyeen, 2022. "A New Transformer-Less Single-Phase Photovoltaic Inverter to Improve the Performance of Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 15(22), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    2. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    3. Bruglieri, Maurizio & Liberti, Leo, 2008. "Optimal running and planning of a biomass-based energy production process," Energy Policy, Elsevier, vol. 36(7), pages 2430-2438, July.
    4. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
    5. Miranda, Rodolfo Farías & Salgado-Herrera, Nadia Maria & Rodríguez-Hernández, Osvaldo & Rodríguez-Rodríguez, Juan Ramon & Robles, Miguel & Ruiz-Robles, Dante & Venegas-Rebollar, Vicente, 2022. "Distributed generation in low-voltage DC systems by wind energy in the Baja California Peninsula, Mexico," Energy, Elsevier, vol. 242(C).
    6. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    7. Zhang, Hao & Tong, Xiangqian & Yin, Jun & Blaabjerg, Frede, 2023. "Neural network-aided 4-DF global efficiency optimal control for the DAB converter based on the comprehensive loss model," Energy, Elsevier, vol. 262(PA).
    8. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    9. Lund, Henrik & Duić, Neven & Krajac˘ić, Goran & Graça Carvalho, Maria da, 2007. "Two energy system analysis models: A comparison of methodologies and results," Energy, Elsevier, vol. 32(6), pages 948-954.
    10. Verhaeghe, C. & Verbeke, S. & Audenaert, A., 2021. "A consistent taxonomic framework: towards common understanding of high energy performance building definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Yuan, Jianjuan & Zhou, Zhihua & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei, 2021. "Analysis and evaluation of the operation data for achieving an on-demand heating consumption prediction model of district heating substation," Energy, Elsevier, vol. 214(C).
    12. Eid, Cherrelle & Bollinger, L. Andrew & Koirala, Binod & Scholten, Daniel & Facchinetti, Emanuele & Lilliestam, Johan & Hakvoort, Rudi, 2016. "Market integration of local energy systems: Is local energy management compatible with European regulation for retail competition?," Energy, Elsevier, vol. 114(C), pages 913-922.
    13. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    14. He Huang & DaPeng Liang & Zhen Tong, 2018. "Integrated Energy Micro-Grid Planning Using Electricity, Heating and Cooling Demands," Energies, MDPI, vol. 11(10), pages 1-20, October.
    15. Jorgensen, K., 2008. "Technologies for electric, hybrid and hydrogen vehicles: Electricity from renewable energy sources in transport," Utilities Policy, Elsevier, vol. 16(2), pages 72-79, June.
    16. Schenk, Niels J. & Moll, Henri C. & Potting, José & Benders, René M.J., 2007. "Wind energy, electricity, and hydrogen in the Netherlands," Energy, Elsevier, vol. 32(10), pages 1960-1971.
    17. Dassisti, M. & Carnimeo, L., 2012. "Net modelling of energy mix among European Countries: A proposal for ruling new scenarios," Energy, Elsevier, vol. 39(1), pages 100-111.
    18. Piotr Kolasiński, 2015. "The Influence of the Heat Source Temperature on the Multivane Expander Output Power in an Organic Rankine Cycle (ORC) System," Energies, MDPI, vol. 8(5), pages 1-19, April.
    19. Möller, Bernd & Lund, Henrik, 2010. "Conversion of individual natural gas to district heating: Geographical studies of supply costs and consequences for the Danish energy system," Applied Energy, Elsevier, vol. 87(6), pages 1846-1857, June.
    20. Gota, Dan-Ioan & Lund, Henrik & Miclea, Liviu, 2011. "A Romanian energy system model and a nuclear reduction strategy," Energy, Elsevier, vol. 36(11), pages 6413-6419.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:258-:d:1015739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.