IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p239-d1014905.html
   My bibliography  Save this article

Evaluation of Particulate Matter (PM) Emissions from Combustion of Selected Types of Rapeseed Biofuels

Author

Listed:
  • Joanna Szyszlak-Bargłowicz

    (Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland)

  • Jacek Wasilewski

    (Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland)

  • Grzegorz Zając

    (Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland)

  • Andrzej Kuranc

    (Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland)

  • Adam Koniuszy

    (Department of Renewable Energy Sources Engineering, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI 1, 71-459 Szczecin, Poland)

  • Małgorzata Hawrot-Paw

    (Department of Renewable Energy Sources Engineering, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI 1, 71-459 Szczecin, Poland)

Abstract

The manuscript describes the results of an experimental study of the level of PM (particulate matter) emissions arising from the combustion of two selected types of biomass (i.e., rapeseed straw pellets and engine biofuel (biodiesel, FAME)), which were derived from rapeseed. The PM emissions from the combustion of biofuels were compared with those obtained from the combustion of their traditional counterparts (i.e., wood pellets and diesel fuel). Both types of pellets were burned in a 10 kW boiler designed to burn these types of fuels. The engine fuels tested were burned in a John Deere 4045TF285JD engine mounted on a dynamometer bench in an engine dyno, under various speed and load conditions. A Testo 380 analyzer was used to measure the PM emission levels in boiler tests, while an MPM4 particle emission meter was used in the engine tests. The combustion (under rated conditions) of rapeseed straw pellets resulted in a significant increase in PM emissions compared to the combustion of wood pellets. The PM emissions during the combustion of wood pellets were 15.45 mg·kg −1 , during the combustion of rapeseed straw pellets, they were 336 mg·kg −1 , and the calculated emission factors were 44.5 mg·MJ −1 and 1589 mg·MJ −1 , respectively. In the engine tests, however, significantly lower particulate emissions were obtained for the evaluated biofuel compared to its conventional counterpart. The combustion of rapeseed oil methyl esters resulted in a 40–60% reduction in PM content in the exhaust gas on average for the realized engine speeds over the full load range compared to the combustion of diesel fuel.

Suggested Citation

  • Joanna Szyszlak-Bargłowicz & Jacek Wasilewski & Grzegorz Zając & Andrzej Kuranc & Adam Koniuszy & Małgorzata Hawrot-Paw, 2022. "Evaluation of Particulate Matter (PM) Emissions from Combustion of Selected Types of Rapeseed Biofuels," Energies, MDPI, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:239-:d:1014905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/239/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/239/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fournel, S. & Palacios, J.H. & Morissette, R. & Villeneuve, J. & Godbout, S. & Heitz, M. & Savoie, P., 2015. "Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops," Applied Energy, Elsevier, vol. 141(C), pages 247-259.
    2. Małgorzata Hawrot-Paw & Adam Koniuszy & Paweł Sędłak & Daria Seń, 2020. "Functional Properties and Microbiological Stability of Fatty Acid Methyl Esters (FAME) under Different Storage Conditions," Energies, MDPI, vol. 13(21), pages 1-12, October.
    3. Ghafghazi, S. & Sowlati, T. & Sokhansanj, S. & Bi, X. & Melin, S., 2011. "Particulate matter emissions from combustion of wood in district heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3019-3028, August.
    4. Branislav Šarkan & Marek Jaśkiewicz & Przemysław Kubiak & Dariusz Tarnapowicz & Michal Loman, 2022. "Exhaust Emissions Measurement of a Vehicle with Retrofitted LPG System," Energies, MDPI, vol. 15(3), pages 1-22, February.
    5. Magdalena Kachel & Artur Kraszkiewicz & Alaa Subr & Stanisław Parafiniuk & Artur Przywara & Milan Koszel & Grzegorz Zając, 2020. "Impact of the Type of Fertilization and the Addition of Glycerol on the Quality of Spring Rape Straw Pellets," Energies, MDPI, vol. 13(4), pages 1-11, February.
    6. Jacek Wasilewski & Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Andrzej Kuranc, 2022. "Evaluation of Greenhouse Gas Emission Levels during the Combustion of Selected Types of Agricultural Biomass," Energies, MDPI, vol. 15(19), pages 1-14, October.
    7. Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
    8. Jaworek, A. & Sobczyk, A.T. & Marchewicz, A. & Krupa, A. & Czech, T., 2021. "Particulate matter emission control from small residential boilers after biomass combustion. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Estela D. Vicente & Márcio A. Duarte & Luís A. C. Tarelho & Célia A. Alves, 2022. "Efficiency of Emission Reduction Technologies for Residential Biomass Combustion Appliances: Electrostatic Precipitator and Catalyst," Energies, MDPI, vol. 15(11), pages 1-14, June.
    2. Duong, Van Minh & Flener, Ursula & Hrbek, Jitka & Hofbauer, Hermann, 2022. "Emission characteristics from the combustion of Acacia Mangium in the automatic feeding pellet stove," Renewable Energy, Elsevier, vol. 186(C), pages 183-194.
    3. Veronika Harantová & Ambróz Hájnik & Alica Kalašová & Tomasz Figlus, 2022. "The Effect of the COVID-19 Pandemic on Traffic Flow Characteristics, Emissions Production and Fuel Consumption at a Selected Intersection in Slovakia," Energies, MDPI, vol. 15(6), pages 1-21, March.
    4. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    5. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    6. Slavin Viktor & Shuba Yevheniy & Korpach Anatolii & Gutarevych Serhiy & Caban Jacek & Matijosius Jonas & Rimkus Alfredas, 2022. "The Performance of a Car with Various Engine Power Systems – Part II," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 13(1), pages 141-151, January.
    7. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    8. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    9. Bartosz Choiński & Ewa Szatyłowicz & Izabela Zgłobicka & Magdalena Joka Ylidiz, 2022. "A Critical Investigation of Certificated Industrial Wood Pellet Combustion: Influence of Process Conditions on CO/CO 2 Emission," Energies, MDPI, vol. 16(1), pages 1-13, December.
    10. Andrzej Ziółkowski & Paweł Fuć & Piotr Lijewski & Aleks Jagielski & Maciej Bednarek & Władysław Kusiak, 2022. "Analysis of Exhaust Emissions from Heavy-Duty Vehicles on Different Applications," Energies, MDPI, vol. 15(21), pages 1-21, October.
    11. Jacek Wasilewski & Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Andrzej Kuranc, 2022. "Evaluation of Greenhouse Gas Emission Levels during the Combustion of Selected Types of Agricultural Biomass," Energies, MDPI, vol. 15(19), pages 1-14, October.
    12. Schumacher, Felix & Nussbaumer, Thomas, 2023. "Four approaches for the year-round operation of wood-fired heating plants with low pollutant emissions," Energy, Elsevier, vol. 278(C).
    13. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    14. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2016. "Effects of district heating networks on optimal energy flow of multi-carrier systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 379-387.
    15. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    16. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Biomass combustion systems: A review on the physical and chemical properties of the ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 235-242.
    17. Krzysztof Dziedzic & Bogusława Łapczyńska-Kordon & Michał Jurczyk & Marek Wróbel & Marcin Jewiarz & Krzysztof Mudryk & Tadeusz Pająk, 2022. "Solid Digestate—Mathematical Modeling of Combustion Process," Energies, MDPI, vol. 15(12), pages 1-22, June.
    18. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
    19. Bartolozzi, Irene & Rizzi, Francesco & Frey, Marco, 2017. "Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 408-420.
    20. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:239-:d:1014905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.