IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3426-d810483.html
   My bibliography  Save this article

Nano-Enhanced Phase Change Materials for Thermal Energy Storage: A Bibliometric Analysis

Author

Listed:
  • Javad Mohammadpour

    (School of Engineering, Macquarie University, Sydney, NSW 2109, Australia)

  • Ann Lee

    (School of Engineering, Macquarie University, Sydney, NSW 2109, Australia)

  • Victoria Timchenko

    (School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia)

  • Robert Taylor

    (School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia)

Abstract

The high latent heat thermal energy storage (LHTES) potential of phase change materials (PCMs) has long promised a step-change in the energy density for thermal storage applications. However, the uptake of PCM systems has been limited due to their relatively slow charging response, limited life, and economic considerations. Fortunately, a concerted global research effort is now underway to remove these remaining technical challenges. The bibliometric analysis of this review reveals that a major focus is now on the development of nano-enhanced phase change materials (NePCM), which have the potential to mitigate many of these technical challenges for PCM-based thermal energy storage systems. As such, our bibliometric analysis has zeroed in on research in the field of thermal energy storage using NePCMs since 1977. It was found that journal articles were the most frequently used document type, representing 79% of the records and that the pace of new work in this specific area has increased exponentially over these two decades, with China accounting for the highest number of citations and the most publications (168), followed by India and Iran. China has also played a central role in the collaboration network among the most productive countries, while Saudi Arabia and Vietnam show the highest international collaboration level.

Suggested Citation

  • Javad Mohammadpour & Ann Lee & Victoria Timchenko & Robert Taylor, 2022. "Nano-Enhanced Phase Change Materials for Thermal Energy Storage: A Bibliometric Analysis," Energies, MDPI, vol. 15(9), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3426-:d:810483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3426/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3426/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Ji Hun & Berardi, Umberto & Chang, Seong Jin & Wi, Seunghwan & Kang, Yujin & Kim, Sumin, 2021. "Energy retrofit of PCM-applied apartment buildings considering building orientation and height," Energy, Elsevier, vol. 222(C).
    2. Khodadadi, J.M. & Fan, Liwu & Babaei, Hasan, 2013. "Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 418-444.
    3. Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
    4. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    5. Wolfgang Glänzel & Henk F. Moed, 2002. "Journal impact measures in bibliometric research," Scientometrics, Springer;Akadémiai Kiadó, vol. 53(2), pages 171-193, February.
    6. Kassianne Tofani & Saeed Tiari, 2021. "Nano-Enhanced Phase Change Materials in Latent Heat Thermal Energy Storage Systems: A Review," Energies, MDPI, vol. 14(13), pages 1-34, June.
    7. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Cabeza, Luisa F., 2017. "Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings," Applied Energy, Elsevier, vol. 202(C), pages 420-434.
    8. Luisa F. Cabeza & Marta Chàfer & Érika Mata, 2020. "Comparative Analysis of Web of Science and Scopus on the Energy Efficiency and Climate Impact of Buildings," Energies, MDPI, vol. 13(2), pages 1-24, January.
    9. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    10. de Paulo, Alex Fabianne & Porto, Geciane Silveira, 2017. "Solar energy technologies and open innovation: A study based on bibliometric and social network analysis," Energy Policy, Elsevier, vol. 108(C), pages 228-238.
    11. Sarrafha, Hamid & Kasaeian, Alibakhsh & Jahangir, Mohammad Hossein & Taylor, Robert A., 2021. "Transient thermal response of multi-walled carbon nanotube phase change materials in building walls," Energy, Elsevier, vol. 224(C).
    12. Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
    13. Idris Al Siyabi & Sourav Khanna & Tapas Mallick & Senthilarasu Sundaram, 2018. "Multiple Phase Change Material (PCM) Configuration for PCM-Based Heat Sinks—An Experimental Study," Energies, MDPI, vol. 11(7), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. ELSihy, ELSaeed Saad & Mokhtar, Omar & Xu, Chao & Du, Xiaoze & Adel, Mohamed, 2023. "Cyclic performance characterization of a high-temperature thermal energy storage system packed with rock/slag pebbles granules combined with encapsulated phase change materials," Applied Energy, Elsevier, vol. 331(C).
    2. Obai Younis & Sameh E. Ahmed & Aissa Abderrahmane & Abdulaziz Alenazi & Ahmed M. Hassan, 2023. "Hydrothermal Mixed Convection in a Split-Lid-Driven Triangular Cavity Suspended by NEPCM," Mathematics, MDPI, vol. 11(6), pages 1-17, March.
    3. Nishant Modi & Xiaolin Wang & Michael Negnevitsky, 2023. "Solar Hot Water Systems Using Latent Heat Thermal Energy Storage: Perspectives and Challenges," Energies, MDPI, vol. 16(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youssef Elomari & Masoud Norouzi & Marc Marín-Genescà & Alberto Fernández & Dieter Boer, 2022. "Integration of Solar Photovoltaic Systems into Power Networks: A Scientific Evolution Analysis," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    2. Wirapong Chansanam & Chunqiu Li, 2022. "Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    3. Xiangwei Wang & Yizhe Yang & Jianglong Lv & Hailong He, 2023. "Past, present and future of the applications of machine learning in soil science and hydrology," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(2), pages 67-80.
    4. Yao, Ye & Du, Huibin & Zou, Hongyang & Zhou, Peng & Antunes, Carlos Henggeler & Neumann, Anne & Yeh, Sonia, 2023. "Fifty years of Energy Policy: A bibliometric overview," Energy Policy, Elsevier, vol. 183(C).
    5. Khare, Apoorv & Jain, Rajesh, 2022. "Mapping the conceptual and intellectual structure of the consumer vulnerability field: A bibliometric analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 567-584.
    6. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    7. David Vérez & Luisa F. Cabeza, 2021. "Which Building Services Are Considered to Have Impact on Climate Change?," Energies, MDPI, vol. 14(13), pages 1-16, June.
    8. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.
    9. Thor, Andreas & Marx, Werner & Leydesdorff, Loet & Bornmann, Lutz, 2016. "Introducing CitedReferencesExplorer (CRExplorer): A program for reference publication year spectroscopy with cited references standardization," Journal of Informetrics, Elsevier, vol. 10(2), pages 503-515.
    10. Cinzia Daraio & Simone Di Leo & Loet Leydesdorff, 2022. "Using the Leiden Rankings as a Heuristics: Evidence from Italian universities in the European landscape," LEM Papers Series 2022/08, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    11. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    12. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    13. Shiwangi Singh & Sanjay Dhir, 2019. "Structured review using TCCM and bibliometric analysis of international cause-related marketing, social marketing, and innovation of the firm," International Review on Public and Nonprofit Marketing, Springer;International Association of Public and Non-Profit Marketing, vol. 16(2), pages 335-347, December.
    14. Ivone de Bem Oliveira & Rhewter Nunes & Lucia Mattiello & Stela Barros-Ribeiro & Isabela Pavanelli Souza & Alexandre Siqueira Guedes Coelho & Rosane Garcia Collevatti, 2019. "Research and partnership in studies of sugarcane using molecular markers: a scientometric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 335-355, April.
    15. Shahzad, Umer & Gupta, Mansi & Sharma, Gagan Deep & Rao, Amar & Chopra, Ritika, 2022. "Resolving energy poverty for social change: Research directions and agenda," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    16. Pan Zhang & Yongjun Du & Sijie Han & Qingan Qiu, 2022. "Global Progress in Oil and Gas Well Research Using Bibliometric Analysis Based on VOSviewer and CiteSpace," Energies, MDPI, vol. 15(15), pages 1-27, July.
    17. Moaaz Kabil & Mohamed Abouelseoud & Faisal Alsubaie & Heba Mostafa Hassan & Imre Varga & Katalin Csobán & Lóránt Dénes Dávid, 2022. "Evolutionary Relationship between Tourism and Real Estate: Evidence and Research Trends," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    18. Toshiyuki Hasumi & Mei-Shiu Chiu, 2022. "Online mathematics education as bio-eco-techno process: bibliometric analysis using co-authorship and bibliographic coupling," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4631-4654, August.
    19. Caputo, Andrea & Pizzi, Simone & Pellegrini, Massimiliano M. & Dabić, Marina, 2021. "Digitalization and business models: Where are we going? A science map of the field," Journal of Business Research, Elsevier, vol. 123(C), pages 489-501.
    20. Zoltán Lakner & Brigitta Plasek & Anna Kiss & Sándor Soós & Ágoston Temesi, 2021. "Derailment or Turning Point? The Effect of the COVID-19 Pandemic on Sustainability-Related Thinking," Sustainability, MDPI, vol. 13(10), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3426-:d:810483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.