IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3001-d797751.html
   My bibliography  Save this article

Handling Load Uncertainty during On-Peak Time via Dual ESS and LSTM with Load Data Augmentation

Author

Listed:
  • Jin Sol Hwang

    (Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea)

  • Jung-Su Kim

    (Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea)

  • Hwachang Song

    (Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea)

Abstract

This paper proposes a scheduling method of dual ESSs (Energy Storage Systems) for the purpose of reducing the peak load when there are sudden loads or generation changes during the on-peak time. The first ESS is scheduled once a day based on a day-ahead load prediction, and the second ESS is scheduled every 15 min during on-peak time based on a short-term load prediction by LSTM (Long Short-Term Memory). Special attention is paid to training the LSTM for the short-term load prediction by using the augmented past load data which is generated by adding possible uncertainties to the past load and temperature data. Based on the load forecast, optimization problems for the scheduling are formulated. The proposed scheduling method is validated using load and temperature data from a real building. In other words, when the proposed method is applied to the real building energy data in the case study, it not only shaves the peak load during on-peak time interval effectively but also results in lower electricity price although there are sudden load or temperature changes during the time interval.

Suggested Citation

  • Jin Sol Hwang & Jung-Su Kim & Hwachang Song, 2022. "Handling Load Uncertainty during On-Peak Time via Dual ESS and LSTM with Load Data Augmentation," Energies, MDPI, vol. 15(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3001-:d:797751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    2. Jin Sol Hwang & Ismi Rosyiana Fitri & Jung-Su Kim & Hwachang Song, 2020. "Optimal ESS Scheduling for Peak Shaving of Building Energy Using Accuracy-Enhanced Load Forecast," Energies, MDPI, vol. 13(21), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Dong & Xihao Dou & Aruhan Bao & Yaoyu Zhang & Dongran Liu, 2022. "Day-Ahead Spot Market Price Forecast Based on a Hybrid Extreme Learning Machine Technique: A Case Study in China," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    2. Pengfei Wang & Yang Liu & Qinqin Sun & Yingqi Bai & Chaopeng Li, 2022. "Research on Data Cleaning Algorithm Based on Multi Type Construction Waste," Sustainability, MDPI, vol. 14(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    2. Suriyan Jomthanachai & Wai Peng Wong & Khai Wah Khaw, 2024. "An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 741-792, February.
    3. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2019. "Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation," Energies, MDPI, vol. 12(18), pages 1-19, September.
    4. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    5. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    6. Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    7. Jiseong Noh & Hyun-Ji Park & Jong Soo Kim & Seung-June Hwang, 2020. "Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    8. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    9. Kostadin Yotov & Emil Hadzhikolev & Stanka Hadzhikoleva & Stoyan Cheresharov, 2022. "Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
    10. Stanislaw Osowski & Robert Szmurlo & Krzysztof Siwek & Tomasz Ciechulski, 2022. "Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    11. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    12. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    13. Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
    14. Andreea Valeria Vesa & Tudor Cioara & Ionut Anghel & Marcel Antal & Claudia Pop & Bogdan Iancu & Ioan Salomie & Vasile Teodor Dadarlat, 2020. "Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    15. Mehmet Türker Takcı & Tuba Gözel, 2022. "Effects of Predictors on Power Consumption Estimation for IT Rack in a Data Center: An Experimental Analysis," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    16. Gülsah Erdogan & Wiem Fekih Hassen, 2023. "Charging Scheduling of Hybrid Energy Storage Systems for EV Charging Stations," Energies, MDPI, vol. 16(18), pages 1-29, September.
    17. Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    18. Munseok Chang & Sungwoo Bae & Gilhwan Cha & Jaehyun Yoo, 2021. "Aggregated Electric Vehicle Fast-Charging Power Demand Analysis and Forecast Based on LSTM Neural Network," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    19. Changping Li & Xiaohui Wang & Longchen Duan & Bo Lei, 2022. "Study on a Discharge Circuit Prediction Model of High-Voltage Electro-Pulse Boring Based on Bayesian Fusion," Energies, MDPI, vol. 15(10), pages 1-12, May.
    20. Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3001-:d:797751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.