IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p2985-d797153.html
   My bibliography  Save this article

Domestic Energy Efficiency Scenarios for Northern Ireland

Author

Listed:
  • Oluwatobiloba Stephanie Ogunrin

    (Centre for Sustainable Technologies, Ulster University, Jordanstown, Newtownabbey, Antrim BT37 0QB, Northern Ireland, UK)

  • Inna Vorushylo

    (Centre for Sustainable Technologies, Ulster University, Jordanstown, Newtownabbey, Antrim BT37 0QB, Northern Ireland, UK)

  • Oghenovo Okpako

    (Centre for Sustainable Technologies, Ulster University, Jordanstown, Newtownabbey, Antrim BT37 0QB, Northern Ireland, UK)

  • Neil Hewitt

    (Centre for Sustainable Technologies, Ulster University, Jordanstown, Newtownabbey, Antrim BT37 0QB, Northern Ireland, UK)

Abstract

Building fabric retrofitting is an important first step in improving building energy efficiency. The United Kingdom’s (UK) housing stock is one of the most inefficient in Europe, and Northern Ireland has the second-highest level of fuel poverty in the UK. This Northern Irish case study developed three fabric retrofit scenarios that estimate potential demand reductions, CO 2 emissions removals and retrofit costs. The first scenario reduces domestic demand by 10% and removes 6% of domestic emissions. The second scenario is more ambitious than the first, and results in an 18% reduction in demand and 12% of emissions removed. The third scenario proposes fabric retrofitting to PassivHaus standard and results in a 42% reduction in demand and 27% of emissions removed. Furthermore, retrofit schemes can provide up to approximately 350,000 jobs annually between 2022 and 2050 for the Northern Irish population. This study demonstrates how fabric retrofit scenarios can be streamlined to the unique features of a housing stock. It shows that fabric retrofit research is important for the formulation of energy efficiency policy and emphasises that domestic sector retrofitting will yield socioeconomic and environmental benefits locally and internationally.

Suggested Citation

  • Oluwatobiloba Stephanie Ogunrin & Inna Vorushylo & Oghenovo Okpako & Neil Hewitt, 2022. "Domestic Energy Efficiency Scenarios for Northern Ireland," Energies, MDPI, vol. 15(9), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:2985-:d:797153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/2985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/2985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gillich, Aaron & Saber, Esmail Mahmoudi & Mohareb, Eugene, 2019. "Limits and uncertainty for energy efficiency in the UK housing stock," Energy Policy, Elsevier, vol. 133(C).
    2. Rosenow, Jan & Guertler, Pedro & Sorrell, Steven & Eyre, Nick, 2018. "The remaining potential for energy savings in UK households," Energy Policy, Elsevier, vol. 121(C), pages 542-552.
    3. Dowson, Mark & Poole, Adam & Harrison, David & Susman, Gideon, 2012. "Domestic UK retrofit challenge: Barriers, incentives and current performance leading into the Green Deal," Energy Policy, Elsevier, vol. 50(C), pages 294-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bobrova, Yekatherina & Papachristos, George & Chiu, Lai Fong, 2021. "Homeowner low carbon retrofits: Implications for future UK policy," Energy Policy, Elsevier, vol. 155(C).
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    3. Bardsley, Nicholas & Büchs, Milena & James, Patrick & Papafragkou, Anastasios & Rushby, Thomas & Saunders, Clare & Smith, Graham & Wallbridge, Rebecca & Woodman, Nicholas, 2019. "Domestic thermal upgrades, community action and energy saving: A three-year experimental study of prosperous households," Energy Policy, Elsevier, vol. 127(C), pages 475-485.
    4. O’Keeffe, Juliette M. & Gilmour, Daniel & Simpson, Edward, 2016. "A network approach to overcoming barriers to market engagement for SMEs in energy efficiency initiatives such as the Green Deal," Energy Policy, Elsevier, vol. 97(C), pages 582-590.
    5. Drago, Carlo & Gatto, Andrea, 2022. "Policy, regulation effectiveness, and sustainability in the energy sector: A worldwide interval-based composite indicator," Energy Policy, Elsevier, vol. 167(C).
    6. Filippidou, Faidra & Nieboer, Nico & Visscher, Henk, 2017. "Are we moving fast enough? The energy renovation rate of the Dutch non-profit housing using the national energy labelling database," Energy Policy, Elsevier, vol. 109(C), pages 488-498.
    7. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    8. Qing He & Haiyang Zhao & Lin Shen & Liuqun Dong & Ye Cheng & Ke Xu, 2019. "Factors Influencing Residents’ Intention toward Green Retrofitting of Existing Residential Buildings," Sustainability, MDPI, vol. 11(15), pages 1-23, August.
    9. Forde, Joe & Hopfe, Christina J. & McLeod, Robert S. & Evins, Ralph, 2020. "Temporal optimization for affordable and resilient Passivhaus dwellings in the social housing sector," Applied Energy, Elsevier, vol. 261(C).
    10. Tharindu Prabatha & Kasun Hewage & Rehan Sadiq, 2023. "An Incentives Planning Framework for Residential Energy Retrofits: A Life Cycle Thinking-Based Analysis under Uncertainty," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    11. Alasdair Reid, 2023. "Closing the Affordable Housing Gap: Identifying the Barriers Hindering the Sustainable Design and Construction of Affordable Homes," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    12. Cuce, Erdem, 2016. "Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass – Latest developments and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1286-1301.
    13. Mehdi Amirkhani & Igor Martek & Mark B. Luther, 2021. "Mapping Research Trends in Residential Construction Retrofitting: A Scientometric Literature Review," Energies, MDPI, vol. 14(19), pages 1-18, September.
    14. Matthew Collins & John Curtis, 2017. "Value for money in energy efficiency retrofits in Ireland: grant provider and grant recipients," Applied Economics, Taylor & Francis Journals, vol. 49(51), pages 5245-5267, November.
    15. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "The development of smart homes market in the UK," Energy, Elsevier, vol. 60(C), pages 361-372.
    16. Revell, Kristy, 2014. "Estimating the environmental impact of home energy visits and extent of behaviour change," Energy Policy, Elsevier, vol. 73(C), pages 461-470.
    17. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    18. Jisoo Shim & Doosam Song & Joowook Kim, 2018. "The Economic Feasibility of Passive Houses in Korea," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    19. Bobrova, Yekatherina & Papachristos, George & Cooper, Adam, 2022. "Process perspective on homeowner energy retrofits: A qualitative metasynthesis," Energy Policy, Elsevier, vol. 160(C).
    20. Zaheer Allam & Ayyoob Sharifi & Damien Giurco & Samantha A. Sharpe, 2021. "On the Theoretical Conceptualisations, Knowledge Structures and Trends of Green New Deals," Sustainability, MDPI, vol. 13(22), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:2985-:d:797153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.