IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2823-d792552.html
   My bibliography  Save this article

Experimental Performance Analysis of Adsorption Modules with Sintered Aluminium Fiber Heat Exchangers and SAPO-34-Water Working Pair for Gas-Driven Heat Pumps: Influence of Evaporator Size, Temperatures, and Half Cycle Times

Author

Listed:
  • Andreas Velte

    (Department Thermal Systems and Buildings, Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, D-79110 Freiburg, Germany)

  • Lukas Joos

    (Department Thermal Systems and Buildings, Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, D-79110 Freiburg, Germany)

  • Gerrit Füldner

    (Department Thermal Systems and Buildings, Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, D-79110 Freiburg, Germany)

Abstract

A major challenge for gas-driven adsorption heat pumps is the production of compact, efficient, and cost-effective adsorption modules. We present the experimental data of a design based on sintered aluminum fiber heat exchangers, a technology currently under development. The adsorption module presented here is the result of the downsizing of a larger module. The downsized module has an adsorption heat exchanger that is 60% of the size of the larger-scale component, and an evaporator-condenser that is only 30% of the size of the larger-scale component. It is designed to fit the heating requirements of a wall-hung heat pump for a single-family home. For the first time, a comprehensive experimental study of the influence of half-cycle time, evaporator and adsorption temperature, and driving temperature on the efficiency and power of the module is presented. At temperature conditions relevant for the application of a gas-driven adsorption heat pump, i.e., evaporator temperature < 10 °C and adsorption temperature > 30 °C, we found that the downsizing has its price in terms of a higher thermal capacity of the components in relation to the adsorbent mass (9.6 kJ/(kg∙K) for ‘Size S’) vs. 5.6 kJ/(kg∙K) for ‘Size L’). We carried out an evaluation of heat and mass transfer resistances to compare the ‘Size L’ module directly with the ‘Size S’ module. Both modules have nearly the same volume-scaled heat and mass transfer resistances of 0.012 dm 3 K/W (adsorption heat exchanger during adsorption) and 0.005 dm 3 K/W (evaporator–condenser during evaporation), and consequently a very similar volumetric power density. This evaluation proves the applicability and the consistency of the concept of heat and mass transfer resistances, and the scalability of this adsorption module technology.

Suggested Citation

  • Andreas Velte & Lukas Joos & Gerrit Füldner, 2022. "Experimental Performance Analysis of Adsorption Modules with Sintered Aluminium Fiber Heat Exchangers and SAPO-34-Water Working Pair for Gas-Driven Heat Pumps: Influence of Evaporator Size, Temperatur," Energies, MDPI, vol. 15(8), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2823-:d:792552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2823/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rivero-Pacho, Angeles M. & Critoph, Robert E. & Metcalf, Steven J., 2017. "Modelling and development of a generator for a domestic gas-fired carbon-ammonia adsorption heat pump," Renewable Energy, Elsevier, vol. 110(C), pages 180-185.
    2. Ursula Wittstadt & Gerrit Füldner & Olaf Andersen & Ralph Herrmann & Ferdinand Schmidt, 2015. "A New Adsorbent Composite Material Based on Metal Fiber Technology and Its Application in Adsorption Heat Exchangers," Energies, MDPI, vol. 8(8), pages 1-16, August.
    3. Mohammadzadeh Kowsari, Milad & Niazmand, Hamid & Tokarev, Mikhail Mikhailovich, 2018. "Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation," Applied Energy, Elsevier, vol. 213(C), pages 540-554.
    4. Mikhaeil, Makram & Gaderer, Matthias & Dawoud, Belal, 2020. "On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study," Energy, Elsevier, vol. 207(C).
    5. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Calabrese, Luigi & Bruzzaniti, Paolo & Palamara, Davide & Freni, Angelo & Proverbio, Edoardo, 2020. "New SAPO-34-SPEEK composite coatings for adsorption heat pumps: Adsorption performance and thermodynamic analysis," Energy, Elsevier, vol. 203(C).
    7. Kyle R. Gluesenkamp & Andrea Frazzica & Andreas Velte & Steven Metcalf & Zhiyao Yang & Mina Rouhani & Corey Blackman & Ming Qu & Eric Laurenz & Angeles Rivero-Pacho & Sam Hinmers & Robert Critoph & Ma, 2020. "Experimentally Measured Thermal Masses of Adsorption Heat Exchangers," Energies, MDPI, vol. 13(5), pages 1-21, March.
    8. Wittstadt, Ursula & Füldner, Gerrit & Laurenz, Eric & Warlo, Alexander & Große, André & Herrmann, Ralph & Schnabel, Lena & Mittelbach, Walter, 2017. "A novel adsorption module with fiber heat exchangers: Performance analysis based on driving temperature differences," Renewable Energy, Elsevier, vol. 110(C), pages 154-161.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Velte & Jörg Weise & Eric Laurenz & Joachim Baumeister & Gerrit Füldner, 2021. "Zeolite NaY-Copper Composites Produced by Sintering Processes for Adsorption Heat Transformation—Technology, Structure and Performance," Energies, MDPI, vol. 14(7), pages 1-24, April.
    2. Patrizia Frontera & Lucio Bonaccorsi & Antonio Fotia & Angela Malara, 2023. "Fibrous Materials for Potential Efficient Energy Recovery at Low-Temperature Heat," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    3. Steven Metcalf & Ángeles Rivero-Pacho & Robert Critoph, 2021. "Design and Large Temperature Jump Testing of a Modular Finned-Tube Carbon–Ammonia Adsorption Generator for Gas-Fired Heat Pumps," Energies, MDPI, vol. 14(11), pages 1-17, June.
    4. Tomasz Bujok & Piotr Boruta & Łukasz Mika & Karol Sztekler, 2021. "Analysis of Designs of Heat Exchangers Used in Adsorption Chillers," Energies, MDPI, vol. 14(23), pages 1-28, December.
    5. Larisa Gordeeva & Yuri Aristov, 2022. "Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application," Energies, MDPI, vol. 15(20), pages 1-25, October.
    6. Kyle R. Gluesenkamp & Andrea Frazzica & Andreas Velte & Steven Metcalf & Zhiyao Yang & Mina Rouhani & Corey Blackman & Ming Qu & Eric Laurenz & Angeles Rivero-Pacho & Sam Hinmers & Robert Critoph & Ma, 2020. "Experimentally Measured Thermal Masses of Adsorption Heat Exchangers," Energies, MDPI, vol. 13(5), pages 1-21, March.
    7. Dias, João M.S. & Costa, Vítor A.F., 2019. "Which dimensional model for the analysis of a coated tube adsorber for adsorption heat pumps?," Energy, Elsevier, vol. 174(C), pages 1110-1120.
    8. João M. S. Dias & Vítor A. F. Costa, 2022. "Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses," Clean Technol., MDPI, vol. 4(4), pages 1-10, November.
    9. Valentin Schwamberger & Aditya Desai & Ferdinand P. Schmidt, 2019. "Novel Adsorption Cycle for High-Efficiency Adsorption Heat Pumps and Chillers: Modeling and Simulation Results," Energies, MDPI, vol. 13(1), pages 1-23, December.
    10. Calabrese, L. & Bonaccorsi, L. & Bruzzaniti, P. & Proverbio, E. & Freni, A., 2019. "SAPO-34 based zeolite coatings for adsorption heat pumps," Energy, Elsevier, vol. 187(C).
    11. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Dias, João M.S. & Costa, Vítor A.F., 2018. "Adsorption heat pumps for heating applications: A review of current state, literature gaps and development challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 317-327.
    13. Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Woo Su Lee & Moon Yong Park & Xuan Quang Duong & Ngoc Vi Cao & Jae Dong Chung, 2020. "Effects of Evaporator and Condenser in the Analysis of Adsorption Chillers," Energies, MDPI, vol. 13(8), pages 1-14, April.
    15. Crespo, Alicia & Fernández, Cèsar & Vérez, David & Tarragona, Joan & Borri, Emiliano & Frazzica, Andrea & Cabeza, Luisa F. & de Gracia, Alvaro, 2023. "Thermal performance assessment and control optimization of a solar-driven seasonal sorption storage system for residential application," Energy, Elsevier, vol. 263(PA).
    16. Tokarev, M.M. & Girnik, I.S. & Aristov, Yu.I., 2022. "Adsorptive transformation of ultralow-temperature heat using a “Heat from Cold” cycle," Energy, Elsevier, vol. 238(PC).
    17. Wenxiong Xi & Mengyao Xu & Chaoyang Liu & Jian Liu, 2022. "Recent Developments of Heat Transfer Enhancement and Thermal Management Technology," Energies, MDPI, vol. 15(16), pages 1-3, August.
    18. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Xiang, Shizhao & Bai, Zhaoyuan & Wang, Ruzhu & Li, Tingxian, 2023. "Performance analysis of sorption thermal battery for high-density cold energy storage enabled by novel tube-free evaporator," Energy, Elsevier, vol. 273(C).
    19. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    20. Ilya Girnik & Yuri Aristov, 2020. "An Aqueous CaCl 2 Solution in the Condenser/Evaporator Instead of Pure Water: Application for the New Adsorptive Cycle “Heat from Cold”," Energies, MDPI, vol. 13(11), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2823-:d:792552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.