IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2774-d790719.html
   My bibliography  Save this article

Fast Terminal Synergetic Control of PMVG-Based Wind Energy Conversion System for Enhancing the Power Extraction Efficiency

Author

Listed:
  • Ganesh Mayilsamy

    (School of IT Information and Control Engineering, Kunsan National University, 588 Daehak-ro, Gunsan-si 54150, Jeonbuk, Korea)

  • Balasubramani Natesan

    (School of IT Information and Control Engineering, Kunsan National University, 588 Daehak-ro, Gunsan-si 54150, Jeonbuk, Korea)

  • Young Hoon Joo

    (School of IT Information and Control Engineering, Kunsan National University, 588 Daehak-ro, Gunsan-si 54150, Jeonbuk, Korea)

  • Seong Ryong Lee

    (School of IT Information and Control Engineering, Kunsan National University, 588 Daehak-ro, Gunsan-si 54150, Jeonbuk, Korea)

Abstract

This study presents a fast terminal synergetic control (FTSC) scheme to investigate the nonlinear control problem of permanent magnet vernier generator (PMVG)-based variable-speed wind energy conversion systems (WECSs). In wind turbines, better speed tracking and fast dynamic behavior is required to achieve the maximum power extraction. To do this, the FTSC method is firstly proposed to improve the dynamic performance of tracking the speedby, addressing the turbulent wind and uncertainties in the PMVG system, which improves the wind energy extraction efficiency and alleviates mechanical stress over the turbine. Next, the closed-loop FTSC with a macro variable and novel reaching law is presented to enhance the convergence of the speed error signal when it is far from equilibrium in finite time. At this time, the controller’s output is a zero chattering generator torque reference that can operate the system in both below- and above-rated wind conditions, in addition to pitch control. Then, the proposed control method is verified for its effectiveness in energy capture through numerical simulation and experimental verification of a 5 kW direct drive PMVG-based WECS. Finally, comparative results confirm the better performance of the proposed system under transients than other controllers considered in this analysis.

Suggested Citation

  • Ganesh Mayilsamy & Balasubramani Natesan & Young Hoon Joo & Seong Ryong Lee, 2022. "Fast Terminal Synergetic Control of PMVG-Based Wind Energy Conversion System for Enhancing the Power Extraction Efficiency," Energies, MDPI, vol. 15(8), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2774-:d:790719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2774/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2774/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    2. Abdullah, M.A. & Yatim, A.H.M. & Tan, C.W. & Saidur, R., 2012. "A review of maximum power point tracking algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3220-3227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristia Kristia & Mohammad Fazle Rabbi, 2023. "Exploring the Synergy of Renewable Energy in the Circular Economy Framework: A Bibliometric Study," Sustainability, MDPI, vol. 15(17), pages 1-27, September.
    2. Thirumoorthy Ramasamy & Ameerkhan Abdul Basheer & Myung-Hwan Tak & Young-Hoon Joo & Seong-Ryong Lee, 2022. "An Effective DC-Link Voltage Control Strategy for Grid-Connected PMVG-Based Wind Energy Conversion System," Energies, MDPI, vol. 15(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youssef, Abdel-Raheem & Mousa, Hossam H.H. & Mohamed, Essam E.M., 2020. "Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area," Renewable Energy, Elsevier, vol. 154(C), pages 875-893.
    2. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.
    3. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
    5. Abrar Ahmed Chhipa & Vinod Kumar & Raghuveer Raj Joshi & Prasun Chakrabarti & Michal Jasinski & Alessandro Burgio & Zbigniew Leonowicz & Elzbieta Jasinska & Rajkumar Soni & Tulika Chakrabarti, 2021. "Adaptive Neuro-Fuzzy Inference System-Based Maximum Power Tracking Controller for Variable Speed WECS," Energies, MDPI, vol. 14(19), pages 1-19, October.
    6. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    7. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Fathabadi, Hassan, 2016. "Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single-sensor-based maximum power point tracking technique," Energy, Elsevier, vol. 113(C), pages 1219-1230.
    9. Fathabadi, Hassan, 2017. "Novel standalone hybrid solar/wind/fuel cell/battery power generation system," Energy, Elsevier, vol. 140(P1), pages 454-465.
    10. Fathabadi, Hassan, 2017. "Novel grid-connected solar/wind powered electric vehicle charging station with vehicle-to-grid technology," Energy, Elsevier, vol. 132(C), pages 1-11.
    11. Bizon, Nicu, 2018. "Optimal operation of fuel cell/wind turbine hybrid power system under turbulent wind and variable load," Applied Energy, Elsevier, vol. 212(C), pages 196-209.
    12. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    13. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    14. Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
    15. Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
    16. Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Gu, Ya-jing & Liu, Hong-wei & Lei, Peng-fei, 2015. "A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics," Energy, Elsevier, vol. 85(C), pages 677-686.
    17. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    19. Wimhurst, Joshua J. & Greene, J. Scott, 2019. "Oklahoma's future wind energy resources and their relationship with the Central Plains low-level jet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    20. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2774-:d:790719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.