IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6650-d912530.html
   My bibliography  Save this article

Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile

Author

Listed:
  • Hamid Chojaa

    (Industrial Technologies and Services Laboratory, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco)

  • Aziz Derouich

    (Industrial Technologies and Services Laboratory, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco)

  • Mohammed Taoussi

    (Industrial Technologies and Services Laboratory, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco)

  • Seif Eddine Chehaidia

    (Industrial Mechanics Laboratory, Badji Mokhtar Annaba University, P.O. Box 12, Annaba 23000, Algeria)

  • Othmane Zamzoum

    (Industrial Technologies and Services Laboratory, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco)

  • Mohamed I. Mosaad

    (Yanbu Industrial College (YIC), Alnahdah, Yanbu Al Sinaiyah, Yanbu 46452, Saudi Arabia)

  • Ayman Alhejji

    (Yanbu Industrial College (YIC), Alnahdah, Yanbu Al Sinaiyah, Yanbu 46452, Saudi Arabia)

  • Mourad Yessef

    (Laboratory of Engineering, Modeling and Systems Analysis, SMBA University, Fez 30000, Morocco)

Abstract

Wind speed variations affect the performance of the wind energy conversion systems (WECSs) negatively. This paper addressed an advanced law of the backstepping controller (ABC) for enhancing the integration of doubly fed induction generator (DFIG)-based grid-connected WECS under wind range of wind speed. This enhancement was achieved through three control schemes, which were blade pitch control, rotor-side control, and grid-side control. The blade pitch control was presented to adjust the wind turbine speed when the wind speed exceeds its rated value. In addition, the rotor and grid-side converter controllers were presented for improving the direct current link voltage profile and achieving maximum power point tracking (MPPT) under speed variations, respectively. To evaluate the effectiveness of the proposed ABC control, a comparison between PI and sliding-mode control (SMC) was presented, considering the parameters of a 1.5 MW DFIG wind turbine in the Assilah zone in Morocco. Moreover, some changes in the DFIG parameters were introduced to investigate the robustness of the proposed controller under parameter uncertainties. Simulation results showed the capability of the proposed ABC controller to enhance the performance of the DFIG-WECS based on variable speed and variable pitch turbine, at both below and above-rated speed, leading to an error around 10 −3 (p.u), with an ATE = 0.4194 in the partial load region; in terms of blade pitch control, an error of 2.10 −4 (p.u) was obtained, and the DC-link voltage profile showed a measured performance of 5 V and remarkable THD value reduction compared to other techniques, with a measured THD value of 2.03%, 1.67%, and 1.46% respectively, in hyposynchronous, hypersynchronous, and pitch activation modes of operation. All simulations were performed using MATLAB/SIMULINK based on real wind profiles in order to make an exhaustive analysis with realistic operating conditions and parameters.

Suggested Citation

  • Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6650-:d:912530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6650/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6650/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelkoul, Bahia & Boumediene, Abdelmadjid, 2021. "Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for doubly fed induction generator (DFIG) under wind turbine," Energy, Elsevier, vol. 214(C).
    2. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    3. Yu-Hsiang Hung & Yi-Wei Chen & Cheng-Han Chuang & Yuan-Yih Hsu, 2021. "PSO Self-Tuning Power Controllers for Low Voltage Improvements of an Offshore Wind Farm in Taiwan," Energies, MDPI, vol. 14(20), pages 1-15, October.
    4. Belmokhtar, K. & Doumbia, M.L. & Agbossou, K., 2014. "Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 76(C), pages 679-693.
    5. Ahmed G. Abo-Khalil & Saeed Alyami & Khairy Sayed & Ayman Alhejji, 2019. "Dynamic Modeling of Wind Turbines Based on Estimated Wind Speed under Turbulent Conditions," Energies, MDPI, vol. 12(10), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinghua Liu & Siwei Qiao & Zhiwei Liu, 2023. "A Survey on Load Frequency Control of Multi-Area Power Systems: Recent Challenges and Strategies," Energies, MDPI, vol. 16(5), pages 1-22, February.
    2. Yingming Liu & Shuyuan Zhang & Xiaodong Wang & Hongfang Xie & Tian Cao, 2022. "Optimization of Pitch Control Parameters for a Wind Turbine Based on Tower Active Damping Control," Energies, MDPI, vol. 15(22), pages 1-22, November.
    3. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    2. Fathabadi, Hassan, 2016. "Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems," Energy, Elsevier, vol. 116(P1), pages 402-416.
    3. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.
    4. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
    5. Maheshwari, Zeel & Kengne, Kamgang & Bhat, Omkar, 2023. "A comprehensive review on wind turbine emulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    6. Fathabadi, Hassan, 2016. "Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single-sensor-based maximum power point tracking technique," Energy, Elsevier, vol. 113(C), pages 1219-1230.
    7. Fathabadi, Hassan, 2017. "Novel standalone hybrid solar/wind/fuel cell/battery power generation system," Energy, Elsevier, vol. 140(P1), pages 454-465.
    8. Belkacem Belabbas & Tayeb Allaoui & Mohamed Tadjine & Mouloud Denai, 2019. "Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1555-1566, December.
    9. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    10. Marwa Hassan & Alsnosy Balbaa & Hanady H. Issa & Noha H. El-Amary, 2018. "Asymptotic Output Tracked Artificial Immunity Controller for Eco-Maximum Power Point Tracking of Wind Turbine Driven by Doubly Fed Induction Generator," Energies, MDPI, vol. 11(10), pages 1-25, October.
    11. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    12. Tai Li & Yanbo Wang & Sunan Sun & Huimin Qian & Leqiu Wang & Lei Wang & Yanxia Shen & Zhicheng Ji, 2023. "Fuzzy Active Disturbance Rejection-Based Virtual Inertia Control Strategy for Wind Farms," Energies, MDPI, vol. 16(10), pages 1-16, May.
    13. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    14. Fu, Jianing & Yu, Xiangyang & Gao, Chunyang & Cui, Junda & Li, Youting, 2022. "Nonsingular fast terminal control for the DFIG-based variable-speed hydro-unit," Energy, Elsevier, vol. 244(PA).
    15. Giannakis, Andreas & Karlis, Athanasios & Karnavas, Yannis L., 2018. "A combined control strategy of a DFIG based on a sensorless power control through modified phase-locked loop and fuzzy logic controllers," Renewable Energy, Elsevier, vol. 121(C), pages 489-501.
    16. Medjber, Ahmed & Guessoum, Abderrezak & Belmili, Hocine & Mellit, Adel, 2016. "New neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system," Energy, Elsevier, vol. 106(C), pages 137-146.
    17. Dongran Song & Jian Yang & Mei Su & Anfeng Liu & Yao Liu & Young Hoon Joo, 2017. "A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics," Energies, MDPI, vol. 10(5), pages 1-18, May.
    18. Habib Benbouhenni & Nicu Bizon, 2021. "Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems," Energies, MDPI, vol. 14(18), pages 1-20, September.
    19. Ganesh Mayilsamy & Balasubramani Natesan & Young Hoon Joo & Seong Ryong Lee, 2022. "Fast Terminal Synergetic Control of PMVG-Based Wind Energy Conversion System for Enhancing the Power Extraction Efficiency," Energies, MDPI, vol. 15(8), pages 1-22, April.
    20. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2024. "A Review of Fast Power-Reserve Control Techniques in Grid-Connected Wind Energy Conversion Systems," Energies, MDPI, vol. 17(2), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6650-:d:912530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.