IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2732-d789463.html
   My bibliography  Save this article

Study on Anode Catalyst Layer Configuration for Proton Exchange Membrane Fuel Cell with Enhanced Reversal Tolerance and Polarization Performance

Author

Listed:
  • Xia Sheng

    (State Key Laboratory of Engines, 135 Yaguan Rd., Tianjin 300350, China
    Powertrain Department, General Institute of FAW, Changchun 130011, China
    These authors contributed equally to this work.)

  • Chunyu Ru

    (Powertrain Department, General Institute of FAW, Changchun 130011, China
    These authors contributed equally to this work.)

  • Honghui Zhao

    (Powertrain Department, General Institute of FAW, Changchun 130011, China)

  • Shouyi Jin

    (Powertrain Department, General Institute of FAW, Changchun 130011, China)

  • Bowen Wang

    (State Key Laboratory of Engines, 135 Yaguan Rd., Tianjin 300350, China)

  • Yupeng Wang

    (State Key Laboratory of Engines, 135 Yaguan Rd., Tianjin 300350, China
    Powertrain Department, General Institute of FAW, Changchun 130011, China)

  • Linghai Han

    (Powertrain Department, General Institute of FAW, Changchun 130011, China)

  • Kui Jiao

    (State Key Laboratory of Engines, 135 Yaguan Rd., Tianjin 300350, China)

Abstract

Hydrogen starvation leads to the extreme deterioration of fuel cell performance due to the induced voltage reversal and carbon corrosion in the anode catalyst layer (ACL) and gas diffusion layer. In this paper, reversal-tolerant anodes (RTAs) with different ACL configurations are proposed, where IrO x /C is used as a water electrolysis catalyst. Experimental results show that the separate IrO x /C catalyst layer of MEA samples, layered reversal-tolerant catalyst-coated membrane (layered-RTA), and reversal-tolerant gas diffusion electrode (GDE-RTA) significantly enhance the reversal tolerance and cell performance compared to conventional anode and common RTA consisting of a homogeneous catalyst layer mixed with IrO x /C and Pt/C (hybrid-RTA). Of these, GDE-RTA possessed a reversal tolerance time of 86 min, a power density of 1.42 W cm −2 , and a minimum degradation rate of 2.4 mV min −1 , suggesting it to be the best RTA structure. Cyclic voltammetry and electrochemical impedance spectrum were used to detect the properties of each sample. Additionally, the degradation mechanisms of the three RTAs are thoroughly investigated and discussed by means of microstructural characterization through scanning electron microscopy and transmission electron microscopy. This work provides novel ideas for the fabrication of a robust RTA by tuning the ACL configuration, which is practical for the commercialization of fuel cells.

Suggested Citation

  • Xia Sheng & Chunyu Ru & Honghui Zhao & Shouyi Jin & Bowen Wang & Yupeng Wang & Linghai Han & Kui Jiao, 2022. "Study on Anode Catalyst Layer Configuration for Proton Exchange Membrane Fuel Cell with Enhanced Reversal Tolerance and Polarization Performance," Energies, MDPI, vol. 15(8), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2732-:d:789463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2732/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2732/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    2. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    3. Ahmed M. Nassef & Ahmed Handam, 2022. "Parameter Estimation-Based Slime Mold Algorithm of Photocatalytic Methane Reforming Process for Hydrogen Production," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
    4. K. Arunprasath & S. Bathrinath & R. K. A. Bhalaji & Koppiahraj Karuppiah & Anish Nair, 2023. "An integrated approach to modelling of barriers in implementation of cellular manufacturing systems in production industries," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1370-1378, August.
    5. Venkatesan, Suriya & Mitzel, Jens & Wegner, Karsten & Costa, Remi & Gazdzicki, Pawel & Friedrich, Kaspar Andreas, 2022. "Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    7. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    8. Zhiming Zhang & Jun Zhang & Tong Zhang, 2022. "Endplate Design and Topology Optimization of Fuel Cell Stack Clamped with Bolts," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    9. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    10. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    11. Li, Jing & Zuo, Wei & E, Jiaqiang & Zhang, Yuntian & Li, Qingqing & Sun, Ke & Zhou, Kun & Zhang, Guangde, 2022. "Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II," Energy, Elsevier, vol. 242(C).
    12. Sven Gruber & Klemen Rola & Danijela Urbancl & Darko Goričanec, 2023. "Carbon-Free Heat Production for High-Temperature Heating Systems," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    13. Hu, Bin & He, Guangjian & Chang, Fulu & Yang, Han & Cao, Xianwu & Yin, Xiaochun, 2022. "Low filler and highly conductive composite bipolar plates with synergistic segregated structure for enhanced proton exchange membrane fuel cell performance," Energy, Elsevier, vol. 251(C).
    14. Iqbal, Mehroze & Laurent, Julien & Benmouna, Amel & Becherif, Mohamed & Ramadan, Haitham S. & Claude, Frederic, 2022. "Ageing-aware load following control for composite-cost optimal energy management of fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 254(PA).
    15. Eapen, Deepa Elizabeth & Suresh, Resmi & Patil, Sairaj & Rengaswamy, Raghunathan, 2021. "A systems engineering perspective on electrochemical energy technologies and a framework for application driven choice of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    17. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    18. Xuan, Lingfeng & Wang, Yancheng & Lan, Jinwei & Tao, Kai & Zhou, Caiying & Mei, Deqing, 2023. "Development of cathode ordered membrane electrode assembly based on TiO2 nanowire array and ultrasonic spraying," Energy, Elsevier, vol. 264(C).
    19. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Abdullah G. Alharbi & Sulaiman Alshammari & Yahia B. Hassan, 2023. "Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    20. Laura Zecchi & Giulia Sandrini & Marco Gadola & Daniel Chindamo, 2022. "Modeling of a Hybrid Fuel Cell Powertrain with Power Split Logic for Onboard Energy Management Using a Longitudinal Dynamics Simulation Tool," Energies, MDPI, vol. 15(17), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2732-:d:789463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.