IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2518-d782683.html
   My bibliography  Save this article

Integrating Smart Grid Devices into the Traditional Protection of Distribution Networks

Author

Listed:
  • Bruno Silva Torres

    (Electrical Engineering Graduate Program, Itajuba Federal University, Itajuba 37500-903, Brazil
    R&D Department, Gnarus Institute University, Itajuba 37500-052, Brazil)

  • Luiz Eduardo Borges da Silva

    (Electrical Engineering Graduate Program, Itajuba Federal University, Itajuba 37500-903, Brazil
    R&D Department, Gnarus Institute University, Itajuba 37500-052, Brazil)

  • Camila Paes Salomon

    (Electrical Engineering Graduate Program, Itajuba Federal University, Itajuba 37500-903, Brazil)

  • Carlos Henrique Valério de Moraes

    (Electrical Engineering Graduate Program, Itajuba Federal University, Itajuba 37500-903, Brazil)

Abstract

Smart grids are a reality in distribution systems. They have assisted in the operation, control, and most of all, the protection of urban networks, significantly solving the contingencies of these networks. This paper treats the initial stage of implementing smart grid switching devices in distribution networks. In this stage, smart grid technologies need to operate with the traditional protection elements (such as fuses, reclosers, and sectionalizers). This fact can create trouble in the protection schemes because there are two distinctive philosophies. In some companies, especially those without substantial capital, these two protection philosophies can run together for many years. The most popular intelligent electronic devices (IEDs) available in the market are studied to verify their features and the possibility to incorporate techniques to allow the two philosophies to work together. After that, the proposed approach shows how the existing IEDs can interact with the traditional devices. Special functions can also be incorporated to inform the control center of an operational problem, increasing the observability of the network. With the proposed approach, the IEDs are transformed into intelligent agents. Practical examples using real distribution systems are presented and discussed, proving the efficacy of the proposed methodology.

Suggested Citation

  • Bruno Silva Torres & Luiz Eduardo Borges da Silva & Camila Paes Salomon & Carlos Henrique Valério de Moraes, 2022. "Integrating Smart Grid Devices into the Traditional Protection of Distribution Networks," Energies, MDPI, vol. 15(7), pages 1-28, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2518-:d:782683
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elisha R. Frederiks & Karen Stenner & Elizabeth V. Hobman, 2015. "The Socio-Demographic and Psychological Predictors of Residential Energy Consumption: A Comprehensive Review," Energies, MDPI, vol. 8(1), pages 1-37, January.
    2. Luciano Cavalcante Siebert & Alexandre Rasi Aoki & Germano Lambert-Torres & Nelson Lambert-de-Andrade & Nikolaos G. Paterakis, 2020. "An Agent-Based Approach for the Planning of Distribution Grids as a Socio-Technical System," Energies, MDPI, vol. 13(18), pages 1-13, September.
    3. Saman Nikkhah & Adib Allahham & Janusz W. Bialek & Sara L. Walker & Damian Giaouris & Simira Papadopoulou, 2021. "Active Participation of Buildings in the Energy Networks: Dynamic/Operational Models and Control Challenges," Energies, MDPI, vol. 14(21), pages 1-28, November.
    4. Giresse Franck Noudjiep Djiepkop & Senthil Krishnamurthy, 2022. "Multi-Objective Feeder Reconfiguration Using Discrete Particle Swarm Optimization," Mathematics, MDPI, vol. 10(3), pages 1-17, February.
    5. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    6. Mahmoud M. Sayed & Mohamed Y. Mahdy & Shady H. E. Abdel Aleem & Hosam K. M. Youssef & Tarek A. Boghdady, 2022. "Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions," Energies, MDPI, vol. 15(6), pages 1-27, March.
    7. Luciano C. Siebert & Adriana Sbicca & Alexandre Rasi Aoki & Germano Lambert-Torres, 2017. "A Behavioral Economics Approach to Residential Electricity Consumption," Energies, MDPI, vol. 10(6), pages 1-18, June.
    8. Min-Sung Kim & Raza Haider & Gyu-Jung Cho & Chul-Hwan Kim & Chung-Yuen Won & Jong-Seo Chai, 2019. "Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems," Energies, MDPI, vol. 12(5), pages 1-21, March.
    9. Saif Jamal & Nadia M. L. Tan & Jagadeesh Pasupuleti, 2021. "A Review of Energy Management and Power Management Systems for Microgrid and Nanogrid Applications," Sustainability, MDPI, vol. 13(18), pages 1-31, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciano Cavalcante Siebert & Alexandre Rasi Aoki & Germano Lambert-Torres & Nelson Lambert-de-Andrade & Nikolaos G. Paterakis, 2020. "An Agent-Based Approach for the Planning of Distribution Grids as a Socio-Technical System," Energies, MDPI, vol. 13(18), pages 1-13, September.
    2. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    4. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    5. Heleen Dreyer & Nadine Sonnenberg & Daleen Van der Merwe, 2022. "Transcending Linearity in Understanding Green Consumer Behaviour: A Social–Cognitive Framework for Behaviour Changes in an Emerging Economy Context," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    6. Qi Huang & Aihua Jiang & Yu Zeng & Jianan Xu, 2022. "Community Flexible Load Dispatching Model Based on Herd Mentality," Energies, MDPI, vol. 15(13), pages 1-18, June.
    7. Kojo Sarfo Gyamfi & Elena Gaura & James Brusey & Alessandro Bezerra Trindade & Nandor Verba, 2020. "Understanding Household Fuel Choice Behaviour in the Amazonas State, Brazil: Effects of Validation and Feature Selection," Energies, MDPI, vol. 13(15), pages 1-21, July.
    8. Marino Coppola & Pierluigi Guerriero & Adolfo Dannier & Santolo Daliento & Davide Lauria & Andrea Del Pizzo, 2020. "Control of a Fault-Tolerant Photovoltaic Energy Converter in Island Operation," Energies, MDPI, vol. 13(12), pages 1-18, June.
    9. Nikolay E. Galushkin & Nataliya N. Yazvinskaya & Dmitriy N. Galushkin, 2022. "A Promising Energy Storage System Based on High-Capacity Metal Hydrides," Energies, MDPI, vol. 15(21), pages 1-12, October.
    10. Jennifer Hoody & Anya Galli Robertson & Sarah Richard & Claire Frankowski & Kevin Hallinan & Ciara Owens & Bob Pohl, 2021. "A Review of Behavioral Energy Reduction Programs and Implementation of a Pilot Peer-to-Peer Led Behavioral Energy Reduction Program for a Low-Income Neighborhood," Energies, MDPI, vol. 14(15), pages 1-27, July.
    11. Nastaran Gholizadeh & Petr Musilek, 2021. "Distributed Learning Applications in Power Systems: A Review of Methods, Gaps, and Challenges," Energies, MDPI, vol. 14(12), pages 1-18, June.
    12. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    14. Cuihui Xia & Tandong Yao & Weicai Wang & Wentao Hu, 2022. "Effect of Climate on Residential Electricity Consumption: A Data-Driven Approach," Energies, MDPI, vol. 15(9), pages 1-20, May.
    15. Never, Babette & Albert, Jose Ramon & Fuhrmann, Hanna & Gsell, Sebastian & Jaramillo, Miguel & Kuhn, Sascha & Senadza, Bernardin, 2020. "Carbon consumption patterns of emerging middle classes," IDOS Discussion Papers 13/2020, German Institute of Development and Sustainability (IDOS).
    16. Sana Bashir & Iftikhar Ahmad & Sajid Rashid Ahmad, 2018. "Low-Emission Modeling for Energy Demand in the Household Sector: A Study of Pakistan as a Developing Economy," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    17. Han, Myat Su & Cudjoe, Dan, 2020. "Determinants of energy-saving behavior of urban residents: Evidence from Myanmar," Energy Policy, Elsevier, vol. 140(C).
    18. Carlos Henrique Valério de Moraes & Jonas Lopes de Vilas Boas & Germano Lambert-Torres & Gilberto Capistrano Cunha de Andrade & Claudio Inácio de Almeida Costa, 2022. "Intelligent Power Distribution Restoration Based on a Multi-Objective Bacterial Foraging Optimization Algorithm," Energies, MDPI, vol. 15(4), pages 1-23, February.
    19. Adrienne Csizmady & Zoltán Ferencz & Lea Kőszeghy & Gergely Tóth, 2021. "Beyond the Energy Poor/Non Energy Poor Divide: Energy Vulnerability and Mindsets on Energy Generation Modes in Hungary," Energies, MDPI, vol. 14(20), pages 1-19, October.
    20. Diana A. Londoño-Pulgarín & Francisco Muñoz-Leiva & Esmeralda Crespo-Almendros, 2020. "Conversion of Residential Heating Systems from Fossil Fuels to Biofuels: A Cross-Cultural Analysis," Energies, MDPI, vol. 13(19), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2518-:d:782683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.