IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2362-d778369.html
   My bibliography  Save this article

Advancements in Hydropower Design and Operation for Present and Future Electrical Demand

Author

Listed:
  • John Cimbala

    (Department of Mechanical Engineering, The Pennsylvania State University, 234 Reber Building, University Park, PA 16802, USA)

  • Bryan Lewis

    (Department of Mechanical and Civil Engineering, Brigham Young University-Idaho, 210 W 4th South, Rexburg, ID 83460, USA)

Abstract

With the current infrastructure, meeting the ever-growing demand for electrical energy across the globe is becoming increasingly difficult [...]

Suggested Citation

  • John Cimbala & Bryan Lewis, 2022. "Advancements in Hydropower Design and Operation for Present and Future Electrical Demand," Energies, MDPI, vol. 15(7), pages 1-2, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2362-:d:778369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qingfeng Ji & Guoying Wu & Weili Liao & Honggang Fan, 2022. "Flow Deflection between Guide Vanes in a Pump Turbine Operating in Pump Mode with a Slight Opening," Energies, MDPI, vol. 15(4), pages 1-18, February.
    2. Zafar Alam & Yoshinobu Watanabe & Shazia Hanif & Tatsuro Sato & Tokihiko Fujimoto, 2021. "Community-Based Business on Small Hydropower (SHP) in Rural Japan: A Case Study on a Community Owned SHP Model of Ohito Agricultural Cooperative," Energies, MDPI, vol. 14(11), pages 1-14, June.
    3. Jonathan Fahlbeck & Håkan Nilsson & Saeed Salehi, 2021. "Flow Characteristics of Preliminary Shutdown and Startup Sequences for a Model Counter-Rotating Pump-Turbine," Energies, MDPI, vol. 14(12), pages 1-17, June.
    4. Mads Mehus Ivarson & Chirag Trivedi & Kaspar Vereide, 2021. "Investigations of Rake and Rib Structures in Sand Traps to Prevent Sediment Transport in Hydropower Plants," Energies, MDPI, vol. 14(13), pages 1-16, June.
    5. Soumyadeep Nag & Kwang Y. Lee, 2021. "Neural Network-Based Control for Hybrid PV and Ternary Pumped-Storage Hydro Plants," Energies, MDPI, vol. 14(15), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunfei Wu & Jianfeng Liu & Jian Zhou, 2022. "The Strategy of Considering the Participation of Doubly-Fed Pumped-Storage Units in Power Grid Frequency Regulation," Energies, MDPI, vol. 15(6), pages 1-16, March.
    2. Li, Deyou & Qin, Yonglin & Wang, Jianpeng & Zhu, Yutong & Wang, Hongjie & Wei, Xianzhu, 2022. "Optimization of blade high-pressure edge to reduce pressure fluctuations in pump-turbine hump region," Renewable Energy, Elsevier, vol. 181(C), pages 24-38.
    3. Salehi, Saeed & Nilsson, Håkan & Lillberg, Eric & Edh, Nicolas, 2021. "An in-depth numerical analysis of transient flow field in a Francis turbine during shutdown," Renewable Energy, Elsevier, vol. 179(C), pages 2322-2347.
    4. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.
    5. Zafar Alam & Yoshinobu Watanabe & Shazia Hanif & Tatsuro Sato & Tokihiko Fujimoto, 2021. "Social Enterprise in Small Hydropower (SHP) Owned by a Limited Liability Partnership (LLP) between a Food Cooperative and a Social Venture Company; a Case Study of the 20 kW Shiraito (Step3) SHP in It," Energies, MDPI, vol. 14(20), pages 1-10, October.
    6. Ola Haugen Havrevoll & Kaspar Vereide & Leif Lia, 2021. "Efficiency of Pressurized Rock Traps for Unlined Hydropower Tunnels," Energies, MDPI, vol. 14(14), pages 1-19, July.
    7. Weixuan Jiao & Zhishuang Li & Li Cheng & Yuqi Wang & Bowen Zhang, 2022. "Study on the Hydraulic and Energy Loss Characteristics of the Agricultural Pumping Station Caused by Hydraulic Structures," Agriculture, MDPI, vol. 12(11), pages 1-16, October.
    8. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2362-:d:778369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.