IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3882-d583826.html
   My bibliography  Save this article

Investigations of Rake and Rib Structures in Sand Traps to Prevent Sediment Transport in Hydropower Plants

Author

Listed:
  • Mads Mehus Ivarson

    (Waterpower Laboratory, NTNU—Norwegian University of Science and Technology, Alfred Getz’ vei 4, 7034 Trondheim, Norway)

  • Chirag Trivedi

    (Waterpower Laboratory, NTNU—Norwegian University of Science and Technology, Alfred Getz’ vei 4, 7034 Trondheim, Norway)

  • Kaspar Vereide

    (Department of Civil and Environmental Engineering, NTNU—Norwegian University of Science and Technology, 7031 Trondheim, Norway
    Sira-Kvina kraftselskap, Stronda 12, 4440 Tonstad, Norway)

Abstract

In order to increase the lifespan of hydraulic turbines in hydropower plants, it is necessary to minimize damages caused by sediment erosion. One solution is to reduce the amount of sediments by improving the design of sand trap. In the present work, the effects on sand trap efficiency by installing v-shaped rake structures for flow distribution and rib structures for sediment trapping is investigated numerically using the SAS–SST turbulence model. The v-shaped rake structures are located in the diffuser near the inlet of the sand trap, while the ribs cover a section of the bed in the downstream end. Three-dimensional models of the sand trap in Tonstad hydropower plant are created. The present study showed that integrating rib type structure can reduce the total weight of sediments escaping the sand trap by 24.5%, which leads to an improved sand trap efficiency. Consequently, the head loss in the sand trap is increased by 1.8%. By additionally including the v-shaped rakes, the total weight of sediments escaping the sand trap is instead increased by 48.5%, thus worsening the sand trap efficiency. This increases head loss by 12.7%. The results also show that turbulent flow commencing at the sand trap diffuser prevents the downstream settling of sediments with a diameter of less than one millimeter. The hydraulic representation of the numerical model is validated by comparison with particle image velocimetry measurements of the flow field from scale experiments and ADCP measurements from the prototype. The tested rib design has not previously been installed in a hydropower plant, and can be recommended. The tested v-shaped rakes have been installed in existing hydropower plants, but this practice should be reconsidered.

Suggested Citation

  • Mads Mehus Ivarson & Chirag Trivedi & Kaspar Vereide, 2021. "Investigations of Rake and Rib Structures in Sand Traps to Prevent Sediment Transport in Hydropower Plants," Energies, MDPI, vol. 14(13), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3882-:d:583826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3882/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3882/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole Gunnar, 2012. "Current research in hydraulic turbines for handling sediments," Energy, Elsevier, vol. 47(1), pages 62-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ola Haugen Havrevoll & Kaspar Vereide & Leif Lia, 2021. "Efficiency of Pressurized Rock Traps for Unlined Hydropower Tunnels," Energies, MDPI, vol. 14(14), pages 1-19, July.
    2. John Cimbala & Bryan Lewis, 2022. "Advancements in Hydropower Design and Operation for Present and Future Electrical Demand," Energies, MDPI, vol. 15(7), pages 1-2, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhiyuan & Qian, Zhongdong, 2017. "Effects of concentration and size of silt particles on the performance of a double-suction centrifugal pump," Energy, Elsevier, vol. 123(C), pages 36-46.
    2. Leguizamón, Sebastián & Alimirzazadeh, Siamak & Jahanbakhsh, Ebrahim & Avellan, François, 2020. "Multiscale simulation of erosive wear in a prototype-scale Pelton runner," Renewable Energy, Elsevier, vol. 151(C), pages 204-215.
    3. Jing Dong & Zhongdong Qian & Biraj Singh Thapa & Bhola Thapa & Zhiwei Guo, 2019. "Alternative Design of Double-Suction Centrifugal Pump to Reduce the Effects of Silt Erosion," Energies, MDPI, vol. 12(1), pages 1-22, January.
    4. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2018. "Flow measurements around guide vanes of Francis turbine: A PIV approach," Renewable Energy, Elsevier, vol. 126(C), pages 177-188.
    5. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2015. "Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1100-1113.
    6. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2017. "Sediment erosion induced leakage flow from guide vane clearance gap in a low specific speed Francis turbine," Renewable Energy, Elsevier, vol. 107(C), pages 253-261.
    7. Badur, Janusz & Ziółkowski, Paweł & Sławiński, Daniel & Kornet, Sebastian, 2015. "An approach for estimation of water wall degradation within pulverized-coal boilers," Energy, Elsevier, vol. 92(P1), pages 142-152.
    8. Mishra, Mukesh Kumar & Khare, Nilay & Agrawal, Alka Bani, 2015. "Small hydro power in India: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 101-115.
    9. Ravi Koirala & Baoshan Zhu & Hari Prasad Neopane, 2016. "Effect of Guide Vane Clearance Gap on Francis Turbine Performance," Energies, MDPI, vol. 9(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3882-:d:583826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.