IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2358-d778284.html
   My bibliography  Save this article

Energy Savings Potential of Semitransparent Photovoltaic Skylights under Different Climate Conditions in China

Author

Listed:
  • Li Zhu

    (School of Architecture, Tianjin University, Tianjin 300072, China
    APEC Sustainable Energy Center, Asia-Pacific Economic Cooperation (APEC)/National Energy Administration (NEA) of China, Tianjin 300072, China)

  • Peng Wang

    (School of Architecture, Tianjin University, Tianjin 300072, China)

  • Yujiao Huo

    (School of Architecture, Tianjin University, Tianjin 300072, China
    APEC Sustainable Energy Center, Asia-Pacific Economic Cooperation (APEC)/National Energy Administration (NEA) of China, Tianjin 300072, China)

  • Wei Tian

    (School of Mechanical Engineering, Tianjin University of Science & Technology, Tianjin 300222, China)

  • Yong Sun

    (School of Architecture, Tianjin University, Tianjin 300072, China
    APEC Sustainable Energy Center, Asia-Pacific Economic Cooperation (APEC)/National Energy Administration (NEA) of China, Tianjin 300072, China)

  • Baoquan Yin

    (School of Architecture, Tianjin University, Tianjin 300072, China
    APEC Sustainable Energy Center, Asia-Pacific Economic Cooperation (APEC)/National Energy Administration (NEA) of China, Tianjin 300072, China)

Abstract

Due to the limited available envelope area, height-constrained buildings integrated with photovoltaics require that more attention be given to the effective use of roofs. Thus, it is crucial to study the energy savings potential of previously neglected semitransparent photovoltaic (STPV) skylights. In this paper, the net energy consumption (NEC) of a room with STPV skylights and energy superiority compared to a reference window were investigated. The energy savings potential was then calculated for five representative cases located in different climate zones and daylight zones, according to the mandatory codes to be implemented in April 2022. Through a global sensitivity analysis, the extent to which each component of the NEC affects the energy savings potential was evaluated. The results indicate that STPV skylights exhibit promising energy savings potential in China. In temperate zones with excellent daylight conditions, an energy savings potential of 0.21 to 2.55 can be achieved, while the maximum energy savings rate (ESR) for the other four cases ranges from 0.52 to 1.1. The effect of electricity power generation (EPG) on the energy savings potential is most pronounced, except for that of STPV skylights on sloped roofs in hot summer and cold winter zones with poor daylight.

Suggested Citation

  • Li Zhu & Peng Wang & Yujiao Huo & Wei Tian & Yong Sun & Baoquan Yin, 2022. "Energy Savings Potential of Semitransparent Photovoltaic Skylights under Different Climate Conditions in China," Energies, MDPI, vol. 15(7), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2358-:d:778284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelhakim Mesloub & Ghazy Abdullah Albaqawy & Mohd Zin Kandar, 2020. "The Optimum Performance of Building Integrated Photovoltaic (BIPV) Windows Under a Semi-Arid Climate in Algerian Office Buildings," Sustainability, MDPI, vol. 12(4), pages 1-38, February.
    2. Sun, Yanyi & Shanks, Katie & Baig, Hasan & Zhang, Wei & Hao, Xia & Li, Yongxue & He, Bo & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Zhang, Jingquan & Xie, Lingzhi & Mallick, Tapas & Wu, Yupe, 2018. "Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs," Applied Energy, Elsevier, vol. 231(C), pages 972-984.
    3. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    4. Aritra Ghosh & Abdelhakim Mesloub & Mabrouk Touahmia & Meriem Ajmi, 2021. "Visual Comfort Analysis of Semi-Transparent Perovskite Based Building Integrated Photovoltaic Window for Hot Desert Climate (Riyadh, Saudi Arabia)," Energies, MDPI, vol. 14(4), pages 1-13, February.
    5. Skandalos, Nikolaos & Karamanis, Dimitris, 2021. "An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones," Applied Energy, Elsevier, vol. 295(C).
    6. Reza Khalifeeh & Hameed Alrashidi & Nazmi Sellami & Tapas Mallick & Walid Issa, 2021. "State-of-the-Art Review on the Energy Performance of Semi-Transparent Building Integrated Photovoltaic across a Range of Different Climatic and Environmental Conditions," Energies, MDPI, vol. 14(12), pages 1-19, June.
    7. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    8. Chae, Young Tae & Kim, Jeehwan & Park, Hongsik & Shin, Byungha, 2014. "Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells," Applied Energy, Elsevier, vol. 129(C), pages 217-227.
    9. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    10. Wang, Meng & Peng, Jinqing & Li, Nianping & Lu, Lin & Ma, Tao & Yang, Hongxing, 2016. "Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model," Energy, Elsevier, vol. 112(C), pages 538-548.
    11. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    12. Karthick, A. & Kalidasa Murugavel, K. & Kalaivani, L., 2018. "Performance analysis of semitransparent photovoltaic module for skylights," Energy, Elsevier, vol. 162(C), pages 798-812.
    13. Alagar Karthick & Muthu Manokar Athikesavan & Manoj Kumar Pasupathi & Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aritra Ghosh, 2020. "Investigation of Inorganic Phase Change Material for a Semi-Transparent Photovoltaic (STPV) Module," Energies, MDPI, vol. 13(14), pages 1-12, July.
    14. Zhang, Weilong & Lu, Lin & Peng, Jinqing, 2017. "Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong," Energy, Elsevier, vol. 137(C), pages 1152-1158.
    15. Cannavale, Alessandro & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Fiorito, Francesco & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Building integration of semitransparent perovskite-based solar cells: Energy performance and visual comfort assessment," Applied Energy, Elsevier, vol. 194(C), pages 94-107.
    16. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    18. Lu, Lin & Law, Kin Man, 2013. "Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong," Renewable Energy, Elsevier, vol. 49(C), pages 250-254.
    19. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes," Applied Energy, Elsevier, vol. 138(C), pages 572-583.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aisikaer Molake & Rui Zhang & Yihuan Zhou, 2023. "Multi-Objective Optimization of Daylight Performance and Thermal Comfort of Enclosed-Courtyard Rural Residence in a Cold Climate Zone, China," Sustainability, MDPI, vol. 15(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
    5. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.
    6. Wu, Zhenghong & Zhang, Ling & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical study on the annual performance of semi-transparent photovoltaic glazing in different climate zones," Energy, Elsevier, vol. 240(C).
    7. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    8. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    9. Liu, Keke & Wang, Meng & Peng, Jinqing & Li, Sihui & Luo, Yimo & Zhang, Xiaofeng, 2024. "Effect of angle of incidence on the optical-electrical-thermal performance of photovoltaic insulated glass units," Renewable Energy, Elsevier, vol. 226(C).
    10. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    11. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    12. Wang, Chuyao & Yang, Hongxing & Ji, Jie, 2023. "Investigation on overall energy performance of a novel multi-functional PV/T window," Applied Energy, Elsevier, vol. 352(C).
    13. Cheng, Yuanda & Gao, Min & Jia, Jie & Sun, Yanyi & Fan, Yi & Yu, Min, 2019. "An optimal and comparison study on daylight and overall energy performance of double-glazed photovoltaics windows in cold region of China," Energy, Elsevier, vol. 170(C), pages 356-366.
    14. Chen, Liutao & Sun, Yong & Zhang, Ning & Yang, Jiachuan & Wang, Dan, 2024. "Quantifying the benefits of BIPV windows in urban environment under climate change: A comparison of three Chinese cities," Renewable Energy, Elsevier, vol. 221(C).
    15. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    16. Uddin, Md Muin & Ji, Jie & Wang, Chuyao & Zhang, Chengyan, 2023. "Building energy conservation potentials of semi-transparent CdTe integrated photovoltaic window systems in Bangladesh context," Renewable Energy, Elsevier, vol. 207(C), pages 512-530.
    17. Wang, Chuyao & Li, Niansi & Gu, Tao & Ji, Jie & Yu, Bendong, 2022. "Design and performance investigation of a novel double-skin ventilated window integrated with air-purifying blind," Energy, Elsevier, vol. 254(PC).
    18. Yu, Bendong & Li, Niansi & Ji, Jie & Wang, Chuyao, 2021. "Thermal, electrical and purification performance of a novel thermal-catalytic CdTe double-layer breathing window in winter," Renewable Energy, Elsevier, vol. 167(C), pages 313-332.
    19. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    20. Shaohang Shi & Ning Zhu, 2023. "Challenges and Optimization of Building-Integrated Photovoltaics (BIPV) Windows: A Review," Sustainability, MDPI, vol. 15(22), pages 1-30, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2358-:d:778284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.