IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v49y2013icp250-254.html
   My bibliography  Save this article

Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong

Author

Listed:
  • Lu, Lin
  • Law, Kin Man

Abstract

This paper develops an overall methodology for investigating the thermal and power behaviors of semi-transparent single-glazed photovoltaic window for office buildings in Hong Kong. In order to estimate its overall energy performance, this study is conducted in terms of total heat gain, output power and daylight illuminance. Three simulation models are established, including one-dimensional transient heat transfer model, power generation model and indoor daylight illuminance model. A typical office room reference is chosen as case study, and the weather data from 2003 to 2007 from the Hong Kong Observatory are used as the simulation inputs. By incorporating the simulation results, the overall energy performance can be evaluated in terms of electricity benefits corresponding to five orientations of the studied typical office. The priority of office orientation considering overall energy performance is: south-east, south, east, south-west and west. The findings show that thermal performance is the primary consideration of energy saving in the entire system whereas electricity consumption of artificial lighting is the secondary one. The overall annual electricity benefits are about 900 kWh and 1300 kWh for water-cooled and air-cooled air-conditioning systems respectively. The application of semi-transparent PV glazed window can not only produce clean energy, but also reduce building energy use by reducing the cooling load and electrical lighting requirements, which definitely benefits our environmental and economic aspects.

Suggested Citation

  • Lu, Lin & Law, Kin Man, 2013. "Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong," Renewable Energy, Elsevier, vol. 49(C), pages 250-254.
  • Handle: RePEc:eee:renene:v:49:y:2013:i:c:p:250-254
    DOI: 10.1016/j.renene.2012.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112000328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2005. "Energy savings of office buildings by the use of semi-transparent solar cells for windows," Renewable Energy, Elsevier, vol. 30(3), pages 281-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Danny H.W. & Lam, Tony N.T. & Chan, Wilco W.H. & Mak, Ada H.L., 2009. "Energy and cost analysis of semi-transparent photovoltaic in office buildings," Applied Energy, Elsevier, vol. 86(5), pages 722-729, May.
    2. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    3. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    4. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    5. Sharples, Steve & Radhi, Hassan, 2013. "Assessing the technical and economic performance of building integrated photovoltaics and their value to the GCC society," Renewable Energy, Elsevier, vol. 55(C), pages 150-159.
    6. Cuce, Erdem, 2016. "Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass – Latest developments and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1286-1301.
    7. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    8. Olivieri, L. & Caamaño-Martín, E. & Moralejo-Vázquez, F.J. & Martín-Chivelet, N. & Olivieri, F. & Neila-Gonzalez, F.J., 2014. "Energy saving potential of semi-transparent photovoltaic elements for building integration," Energy, Elsevier, vol. 76(C), pages 572-583.
    9. Zhang, Weilong & Lu, Lin & Peng, Jinqing, 2017. "Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong," Energy, Elsevier, vol. 137(C), pages 1152-1158.
    10. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    11. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.
    12. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Xie, Lei & Wang, Xiliang & Wu, Jing, 2018. "Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season," Energy, Elsevier, vol. 165(PB), pages 326-342.
    13. Cheng, Yuanda & Gao, Min & Jia, Jie & Sun, Yanyi & Fan, Yi & Yu, Min, 2019. "An optimal and comparison study on daylight and overall energy performance of double-glazed photovoltaics windows in cold region of China," Energy, Elsevier, vol. 170(C), pages 356-366.
    14. Uddin, Md Muin & Wang, Chuyao & Zhang, Chengyan & Ji, Jie, 2022. "Investigating the energy-saving performance of a CdTe-based semi-transparent photovoltaic combined hybrid vacuum glazing window system," Energy, Elsevier, vol. 253(C).
    15. Vassiliades, Constantinos & Michael, Aimilios & Savvides, Andreas & Kalogirou, Soteris, 2018. "Improvement of passive behaviour of existing buildings through the integration of active solar energy systems," Energy, Elsevier, vol. 163(C), pages 1178-1192.
    16. Abdelhakim Mesloub & Ghazy Abdullah Albaqawy & Mohd Zin Kandar, 2020. "The Optimum Performance of Building Integrated Photovoltaic (BIPV) Windows Under a Semi-Arid Climate in Algerian Office Buildings," Sustainability, MDPI, vol. 12(4), pages 1-38, February.
    17. Liao, Wei & Xu, Shen, 2015. "Energy performance comparison among see-through amorphous-silicon PV (photovoltaic) glazings and traditional glazings under different architectural conditions in China," Energy, Elsevier, vol. 83(C), pages 267-275.
    18. Sun, Yanyi & Shanks, Katie & Baig, Hasan & Zhang, Wei & Hao, Xia & Li, Yongxue & He, Bo & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Zhang, Jingquan & Xie, Lingzhi & Mallick, Tapas & Wu, Yupe, 2018. "Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs," Applied Energy, Elsevier, vol. 231(C), pages 972-984.
    19. Cheng, Yuanda & Gao, Min & Dong, Jiankai & Jia, Jie & Zhao, Xudong & Li, Guiqiang, 2018. "Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China," Applied Energy, Elsevier, vol. 232(C), pages 517-526.
    20. Refat, Khalid H. & Sajjad, Redwan N., 2020. "Prospect of achieving net-zero energy building with semi-transparent photovoltaics: A device to system level perspective," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:49:y:2013:i:c:p:250-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.