IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2251-d774837.html
   My bibliography  Save this article

Optimization of Hybrid Renewable Energy Microgrid for Rural Agricultural Area in Southern Philippines

Author

Listed:
  • Rovick Tarife

    (Graduate School of Environment and Energy Engineering, Waseda University, Tokyo 169-8555, Japan)

  • Yosuke Nakanishi

    (Graduate School of Environment and Energy Engineering, Waseda University, Tokyo 169-8555, Japan)

  • Yining Chen

    (Graduate School of Environment and Energy Engineering, Waseda University, Tokyo 169-8555, Japan)

  • Yicheng Zhou

    (Graduate School of Environment and Energy Engineering, Waseda University, Tokyo 169-8555, Japan)

  • Noel Estoperez

    (Department of Electrical Engineering and Technology, Mindanao State University–Iligan Institute of Technology, A. Bonifacio Ave., Iligan City 9200, Philippines)

  • Anacita Tahud

    (Department of Electrical Engineering and Technology, Mindanao State University–Iligan Institute of Technology, A. Bonifacio Ave., Iligan City 9200, Philippines)

Abstract

Microgrids, or distributed systems of local energy generation, transmission, and demand, are now technologically and operationally capable of providing power to communities, especially in rural and peri-urban regions of developing nations. The reliability of the system, the cost of power generation, and the operating environmental impact are the major issues when designing and evaluating the performance of an off-grid hybrid renewable energy microgrid (HREM). This paper presents an integrated method for optimal sizing and operation of an HREM for rural agricultural communities in the Southern Philippines composed of run-of-the-river hydropower, photovoltaics (PV), diesel generator, and a battery energy storage system (BESS) using multi-objective particle swarm optimization (MOPSO) and a proposed multi-case power management strategy. The three conflicting objective functions that were simultaneously minimized were: loss of power supply probability (LPSP), levelized cost of energy (LCOE), and greenhouse gas (GHG) emissions, subject to several constraints. The optimization generated 200 non-dominated or Pareto optimal alternative solutions, 4 of which were selected as solutions of interest. Based on the results, the optimal sizes of the main components for the reliable operation of the system are 100 panels with a rating of 0.25 kW for PV, 100 kWh for BESS, and 13 kW for the diesel generator, with corresponding LCOE, LPSP, and GHG emission values of 0.1795 USD/kWh, 0.05%, and 7874 kg, respectively, for 1 year. The effectiveness of the proposed HREM design was also analyzed, and the study yielded plenty of useful findings that could aid the electrification of the area.

Suggested Citation

  • Rovick Tarife & Yosuke Nakanishi & Yining Chen & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2022. "Optimization of Hybrid Renewable Energy Microgrid for Rural Agricultural Area in Southern Philippines," Energies, MDPI, vol. 15(6), pages 1-29, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2251-:d:774837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luu Ngoc An & Tran Quoc Tuan, 2018. "Dynamic Programming for Optimal Energy Management of Hybrid Wind–PV–Diesel–Battery," Energies, MDPI, vol. 11(11), pages 1-16, November.
    2. Iver Bakken Sperstad & Magnus Korpås, 2019. "Energy Storage Scheduling in Distribution Systems Considering Wind and Photovoltaic Generation Uncertainties," Energies, MDPI, vol. 12(7), pages 1-24, March.
    3. Woo-Kyu Chae & Hak-Ju Lee & Jong-Nam Won & Jung-Sung Park & Jae-Eon Kim, 2015. "Design and Field Tests of an Inverted Based Remote MicroGrid on a Korean Island," Energies, MDPI, vol. 8(8), pages 1-18, August.
    4. Kutaiba Sabah Nimma & Monaaf D. A. Al-Falahi & Hung Duc Nguyen & S. D. G. Jayasinghe & Thair S. Mahmoud & Michael Negnevitsky, 2018. "Grey Wolf Optimization-Based Optimum Energy-Management and Battery-Sizing Method for Grid-Connected Microgrids," Energies, MDPI, vol. 11(4), pages 1-27, April.
    5. Malheiro, André & Castro, Pedro M. & Lima, Ricardo M. & Estanqueiro, Ana, 2015. "Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems," Renewable Energy, Elsevier, vol. 83(C), pages 646-657.
    6. Muhammad Yousif & Qian Ai & Yang Gao & Waqas Ahmad Wattoo & Ziqing Jiang & Ran Hao, 2018. "Application of Particle Swarm Optimization to a Scheduling Strategy for Microgrids Coupled with Natural Gas Networks," Energies, MDPI, vol. 11(12), pages 1-16, December.
    7. Woan-Ho Park & Hamza Abunima & Mark B. Glick & Yun-Su Kim, 2021. "Energy Curtailment Scheduling MILP Formulation for an Islanded Microgrid with High Penetration of Renewable Energy," Energies, MDPI, vol. 14(19), pages 1-15, September.
    8. Cardoso, Gonçalo & Brouhard, Thomas & DeForest, Nicholas & Wang, Dai & Heleno, Miguel & Kotzur, Leander, 2018. "Battery aging in multi-energy microgrid design using mixed integer linear programming," Applied Energy, Elsevier, vol. 231(C), pages 1059-1069.
    9. Yimy E. García-Vera & Rodolfo Dufo-López & José L. Bernal-Agustín, 2020. "Techno-Economic Feasibility Analysis through Optimization Strategies and Load Shifting in Isolated Hybrid Microgrids with Renewable Energy for the Non-Interconnected Zone (NIZ) of Colombia," Energies, MDPI, vol. 13(22), pages 1-20, November.
    10. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Yusta-Loyo, José M. & Domínguez-Navarro, José A. & Ramírez-Rosado, Ignacio J. & Lujano, Juan & Aso, Ismael, 2011. "Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage," Applied Energy, Elsevier, vol. 88(11), pages 4033-4041.
    11. Lei Yang & Xiaohui Yang & Yue Wu & Xiaoping Liu, 2018. "Applied Research on Distributed Generation Optimal Allocation Based on Improved Estimation of Distribution Algorithm," Energies, MDPI, vol. 11(9), pages 1-17, September.
    12. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    13. Homeyra Akter & Harun Or Rashid Howlader & Ahmed Y. Saber & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2021. "Optimal Sizing of Hybrid Microgrid in a Remote Island Considering Advanced Direct Load Control for Demand Response and Low Carbon Emission," Energies, MDPI, vol. 14(22), pages 1-19, November.
    14. Anand Krishnan Prakash & Kun Zhang & Pranav Gupta & David Blum & Marc Marshall & Gabe Fierro & Peter Alstone & James Zoellick & Richard Brown & Marco Pritoni, 2020. "Solar+ Optimizer: A Model Predictive Control Optimization Platform for Grid Responsive Building Microgrids," Energies, MDPI, vol. 13(12), pages 1-27, June.
    15. Yuyan Sun & Zexiang Cai & Ziyi Zhang & Caishan Guo & Guolong Ma & Yongxia Han, 2020. "Coordinated Energy Scheduling of a Distributed Multi-Microgrid System Based on Multi-Agent Decisions," Energies, MDPI, vol. 13(16), pages 1-20, August.
    16. Fethi Khlifi & Habib Cherif & Jamel Belhadj, 2021. "Environmental and Economic Optimization and Sizing of a Micro-Grid with Battery Storage for an Industrial Application," Energies, MDPI, vol. 14(18), pages 1-17, September.
    17. Jakub Jasiński & Mariusz Kozakiewicz & Maciej Sołtysik, 2021. "Determinants of Energy Cooperatives’ Development in Rural Areas—Evidence from Poland," Energies, MDPI, vol. 14(2), pages 1-19, January.
    18. Xiaomin Wu & Weihua Cao & Dianhong Wang & Min Ding, 2019. "A Multi-Objective Optimization Dispatch Method for Microgrid Energy Management Considering the Power Loss of Converters," Energies, MDPI, vol. 12(11), pages 1-19, June.
    19. Balderrama, Sergio & Lombardi, Francesco & Riva, Fabio & Canedo, Walter & Colombo, Emanuela & Quoilin, Sylvain, 2019. "A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: The case study of the “El Espino” community," Energy, Elsevier, vol. 188(C).
    20. José Luis Torres-Madroñero & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Hybrid Energy Systems Sizing for the Colombian Context: A Genetic Algorithm and Particle Swarm Optimization Approach," Energies, MDPI, vol. 13(21), pages 1-30, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Efstathios E. Michaelides, 2022. "Transition to Renewable Energy for Communities: Energy Storage Requirements and Dissipation," Energies, MDPI, vol. 15(16), pages 1-11, August.
    2. Maciej Żołądek & Alexandros Kafetzis & Rafał Figaj & Kyriakos Panopoulos, 2022. "Energy-Economic Assessment of Islanded Microgrid with Wind Turbine, Photovoltaic Field, Wood Gasifier, Battery, and Hydrogen Energy Storage," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    3. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    4. Daniel Kitamura & Leonardo Willer & Bruno Dias & Tiago Soares, 2023. "Risk-Averse Stochastic Programming for Planning Hybrid Electrical Energy Systems: A Brazilian Case," Energies, MDPI, vol. 16(3), pages 1-16, February.
    5. Olivier Cleynen & Dennis Powalla & Stefan Hoerner & Dominique Thévenin, 2022. "An Efficient Method for Computing the Power Potential of Bypass Hydropower Installations," Energies, MDPI, vol. 15(9), pages 1-13, April.
    6. Paweł Dworak & Andrzej Mrozik & Agata Korzelecka-Orkisz & Adam Tański & Krzysztof Formicki, 2023. "Energy Self-Sufficiency of a Salmonids Breeding Facility in the Recirculating Aquaculture System," Energies, MDPI, vol. 16(6), pages 1-22, March.
    7. Marcelino, C.G. & Leite, G.M.C. & Wanner, E.F. & Jiménez-Fernández, S. & Salcedo-Sanz, S., 2023. "Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm," Energy, Elsevier, vol. 266(C).
    8. Diego Mendoza Osorio & Javier Rosero Garcia, 2023. "Convex Stochastic Approaches for the Optimal Allocation of Distributed Energy Resources in AC Distribution Networks with Measurements Fitted to a Continuous Probability Distribution Function," Energies, MDPI, vol. 16(14), pages 1-27, July.
    9. Upasana Lakhina & Irraivan Elamvazuthi & Nasreen Badruddin & Ajay Jangra & Bao-Huy Truong & Joseph M. Guerrero, 2023. "A Cost-Effective Multi-Verse Optimization Algorithm for Efficient Power Generation in a Microgrid," Sustainability, MDPI, vol. 15(8), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Bento & Hugo Nunes & José Pombo & Maria do Rosário Calado & Sílvio Mariano, 2019. "Daily Operation Optimization of a Hybrid Energy System Considering a Short-Term Electricity Price Forecast Scheme," Energies, MDPI, vol. 12(5), pages 1-25, March.
    2. Alexander Lavrik & Yuri Zhukovskiy & Pavel Tcvetkov, 2021. "Optimizing the Size of Autonomous Hybrid Microgrids with Regard to Load Shifting," Energies, MDPI, vol. 14(16), pages 1-19, August.
    3. Mukhopadhyay, Bineeta & Das, Debapriya, 2021. "Optimal multi-objective expansion planning of a droop-regulated islanded microgrid," Energy, Elsevier, vol. 218(C).
    4. Fayza S. Mahmoud & Ashraf M. Abdelhamid & Ameena Al Sumaiti & Abou-Hashema M. El-Sayed & Ahmed A. Zaki Diab, 2022. "Sizing and Design of a PV-Wind-Fuel Cell Storage System Integrated into a Grid Considering the Uncertainty of Load Demand Using the Marine Predators Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-26, October.
    5. Akhtar Hussain & Hak-Man Kim, 2020. "Goal-Programming-Based Multi-Objective Optimization in Off-Grid Microgrids," Sustainability, MDPI, vol. 12(19), pages 1-18, October.
    6. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    7. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    8. Javed, Muhammad Shahzad & Song, Aotian & Ma, Tao, 2019. "Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm," Energy, Elsevier, vol. 176(C), pages 704-717.
    9. Mohammad Shafiey Dehaj & Hassan Hajabdollahi, 2021. "Multi-objective optimization of hybrid solar/wind/diesel/battery system for different climates of Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10910-10936, July.
    10. Udeh, Godfrey T. & Michailos, Stavros & Ingham, Derek & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2022. "A modified rule-based energy management scheme for optimal operation of a hybrid PV-wind-Stirling engine integrated multi-carrier energy system," Applied Energy, Elsevier, vol. 312(C).
    11. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    12. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    13. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    14. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    15. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    16. Qingle Pang & Lin Ye & Houlei Gao & Xinian Li & Yang Zheng & Chenbin He, 2021. "Penalty Electricity Price-Based Optimal Control for Distribution Networks," Energies, MDPI, vol. 14(7), pages 1-16, March.
    17. Zhu, Jiaoyiling & Hu, Weihao & Xu, Xiao & Liu, Haoming & Pan, Li & Fan, Haoyang & Zhang, Zhenyuan & Chen, Zhe, 2022. "Optimal scheduling of a wind energy dominated distribution network via a deep reinforcement learning approach," Renewable Energy, Elsevier, vol. 201(P1), pages 792-801.
    18. Abdullah Al-Shereiqi & Amer Al-Hinai & Mohammed Albadi & Rashid Al-Abri, 2021. "Optimal Sizing of Hybrid Wind-Solar Power Systems to Suppress Output Fluctuation," Energies, MDPI, vol. 14(17), pages 1-16, August.
    19. Díaz, Guzmán & Planas, Estefanía & Andreu, Jon & Kortabarria, Iñigo, 2015. "Joint cost of energy under an optimal economic policy of hybrid power systems subject to uncertainty," Energy, Elsevier, vol. 88(C), pages 837-848.
    20. Sachs, Julia & Sawodny, Oliver, 2016. "Multi-objective three stage design optimization for island microgrids," Applied Energy, Elsevier, vol. 165(C), pages 789-800.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2251-:d:774837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.