IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1685-d757380.html
   My bibliography  Save this article

An Improved Hidden Markov Model for Monitoring the Process with Autocorrelated Observations

Author

Listed:
  • Yaping Li

    (College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China)

  • Haiyan Li

    (College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China)

  • Zhen Chen

    (Department of Industrial Engineering & Management, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Ying Zhu

    (Department of Industrial Engineering & Management, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

With the development of intelligent manufacturing, automated data acquisition techniques are widely used. The autocorrelations between data that are collected from production processes have become more common. Residual charts are a good approach to monitoring the process with data autocorrelation. An improved hidden Markov model (IHMM) for the prediction of autocorrelated observations and a new expectation maximization (EM) algorithm is proposed. A residual chart based on IHMM is employed to monitor the autocorrelated process. The numerical experiment shows that, in general, IHMMs outperform both conventional hidden Markov models (HMMs) and autoregressive (AR) models in quality shift diagnosis, decreasing the cost of missing alarms. Moreover, the times taken by IHMMs for training and prediction are found to be much less than those of HMMs.

Suggested Citation

  • Yaping Li & Haiyan Li & Zhen Chen & Ying Zhu, 2022. "An Improved Hidden Markov Model for Monitoring the Process with Autocorrelated Observations," Energies, MDPI, vol. 15(5), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1685-:d:757380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1685/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1685/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaping Li & Enrico Zio & Ershun Pan, 2021. "An MEWMA-based segmental multivariate hidden Markov model for degradation assessment and prediction," Journal of Risk and Reliability, , vol. 235(5), pages 831-844, October.
    2. Jinho Kim & Myong K. Jeong & Elsayed A. Elsayed, 2017. "Monitoring multistage processes with autocorrelated observations," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2385-2396, April.
    3. Tang, Diyin & Makis, Viliam & Jafari, Leila & Yu, Jinsong, 2015. "Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 198-207.
    4. Nien Fan Zhang, 1997. "Detection capability of residual control chart for stationary process data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(4), pages 475-492.
    5. Bruno Chaves Franco & Giovanni Celano & Philippe Castagliola & Antonio Fernando Branco Costa & Marcela Aparecida Guerreiro Machado, 2015. "A new sampling strategy for the Shewhart control chart monitoring a process with wandering mean," International Journal of Production Research, Taylor & Francis Journals, vol. 53(14), pages 4231-4248, July.
    6. Pan, Xia & Jarrett, Jeffrey, 2007. "Using vector autoregressive residuals to monitor multivariate processes in the presence of serial correlation," International Journal of Production Economics, Elsevier, vol. 106(1), pages 204-216, March.
    7. Yang, Hsu-Hao & Huang, Mei-Ling & Lai, Chun-Mei & Jin, Jhih-Rong, 2018. "An approach combining data mining and control charts-based model for fault detection in wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 808-816.
    8. Hsu-Hao Yang & Mei-Ling Huang & Shih-Wei Yang, 2015. "Integrating Auto-Associative Neural Networks with Hotelling T 2 Control Charts for Wind Turbine Fault Detection," Energies, MDPI, vol. 8(10), pages 1-16, October.
    9. Xia, Tangbin & Dong, Yifan & Pan, Ershun & Zheng, Meimei & Wang, Hao & Xi, Lifeng, 2021. "Fleet-level opportunistic maintenance for large-scale wind farms integrating real-time prognostic updating," Renewable Energy, Elsevier, vol. 163(C), pages 1444-1454.
    10. Roberto Campos Leoni & Marcela Aparecida Guerreiro Machado & Antonio Fernando Branco Costa, 2016. "The T -super-2 chart with mixed samples to control bivariate autocorrelated processes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(11), pages 3294-3310, June.
    11. Linhan Ouyang & Jianxiong Chen & Yizhong Ma & Chanseok Park & Jionghua (Judy) Jin, 2020. "Bayesian closed-loop robust process design considering model uncertainty and data quality," IISE Transactions, Taylor & Francis Journals, vol. 52(3), pages 288-300, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Benková & Dagmar Bednárová & Gabriela Bogdanovská & Marcela Pavlíčková, 2023. "Use of Statistical Process Control for Coking Time Monitoring," Mathematics, MDPI, vol. 11(16), pages 1-30, August.
    2. Alexandre Martins & Balduíno Mateus & Inácio Fonseca & José Torres Farinha & João Rodrigues & Mateus Mendes & António Marques Cardoso, 2023. "Predicting the Health Status of a Pulp Press Based on Deep Neural Networks and Hidden Markov Models," Energies, MDPI, vol. 16(6), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaping Li & Enrico Zio & Ershun Pan, 2021. "An MEWMA-based segmental multivariate hidden Markov model for degradation assessment and prediction," Journal of Risk and Reliability, , vol. 235(5), pages 831-844, October.
    2. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    3. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Peruchi, Rogério Santana & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & Ferreira, João Roberto & de Santana Carmelossi, Michele, 2013. "A new multivariate gage R&R method for correlated characteristics," International Journal of Production Economics, Elsevier, vol. 144(1), pages 301-315.
    5. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    6. Nooshin Salari & Viliam Makis, 2020. "Application of Markov renewal theory and semi‐Markov decision processes in maintenance modeling and optimization of multi‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 548-558, October.
    7. Roberto Campos Leoni & Marcela Aparecida Guerreiro Machado & Antonio Fernando Branco Costa, 2016. "The T -super-2 chart with mixed samples to control bivariate autocorrelated processes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(11), pages 3294-3310, June.
    8. Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.
    9. A. Snoussi, 2011. "SPC for short-run multivariate autocorrelated processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2303-2312.
    10. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    11. Marwa Belhaj Salem & Mitra Fouladirad & Estelle Deloux, 2021. "Prognostic and Classification of Dynamic Degradation in a Mechanical System Using Variance Gamma Process," Mathematics, MDPI, vol. 9(3), pages 1-25, January.
    12. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    13. Li, Yao & He, Yihai & Liao, Ruoyu & Zheng, Xin & Dai, Wei, 2022. "Integrated predictive maintenance approach for multistate manufacturing system considering geometric and non-geometric defects of products," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Zamba, K.D. & Tsiamyrtzis, Panagiotis & Hawkins, Douglas M., 2013. "A three-state recursive sequential Bayesian algorithm for biosurveillance," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 82-97.
    16. Lee, Jinwoo & Kwon, Daeil & Kim, Namhun & Lee, Changyong, 2019. "PHM-based wiring system damage estimation for near zero downtime in manufacturing facilities," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 213-218.
    17. Anna Malinovskaya & Philipp Otto, 2021. "Online network monitoring," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1337-1364, December.
    18. Leoni, Roberto Campos & Costa, Antonio Fernando Branco & Machado, Marcela Aparecida Guerreiro, 2015. "The effect of the autocorrelation on the performance of the T2 chart," European Journal of Operational Research, Elsevier, vol. 247(1), pages 155-165.
    19. Chen, Zhen & Li, Yaping & Xia, Tangbin & Pan, Ershun, 2019. "Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 123-136.
    20. Zhu, Ying & Xia, Tangbin & Hong, Ge & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2022. "Collaborative maintenance service and component sales under coopetition patterns for OEMs challenged by booming used-component sales," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1685-:d:757380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.