IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1298-d746634.html
   My bibliography  Save this article

Wireless Drone Charging Station Using Class-E Power Amplifier in Vertical Alignment and Lateral Misalignment Conditions

Author

Listed:
  • Aqeel Mahmood Jawad

    (Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
    Department of Computer Technology Engineering, Al-Rafidain University College, Baghdad 10064, Iraq)

  • Rosdiadee Nordin

    (Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Haider Mahmood Jawad

    (Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
    Department of Computer Technology Engineering, Al-Rafidain University College, Baghdad 10064, Iraq)

  • Sadik Kamel Gharghan

    (Department of Medical Instrumentation Techniques Engineering, Electrical Engineering Technical College, Middle Technical University, Baghdad 10001, Iraq)

  • Asma’ Abu-Samah

    (Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Mahmood Jawad Abu-Alshaeer

    (Department of Statistics, Al-Rafidain University College, Baghdad 10064, Iraq)

  • Nor Fadzilah Abdullah

    (Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

Abstract

Recent major advancements in drone charging station design are related to the differences in coil design between the material (copper or aluminum) and inner thickness (diameter design) to address power transfer optimization and increased efficiency. The designs are normally challenged with reduced weight on the drone’s side, which can lead to reduced payload or misalignment position issues between receiver and transmitter, limiting the performance of wireless charging. In this work, the coil combination was tested in vertical alignment from 2 cm to 50 cm, and in lateral misalignment positions that were stretched across 2, 5, 8, 10, and 15 cm ranges. Simulated and experimental results demonstrated improved transfer distances when the drone battery load was 100 Ω. With the proposed design, the vertical transfer power that was achieved was 21.12 W, 0.460 A, with 81.5% transfer efficiency, while the maximum lateral misalignment air gap that was achieved was 2 cm with 19.22 W and 74.15% efficiency. This study provides evidence that the developed circuit that is based on magnetic resonant coupling (MRC) is an effective technique towards improving power transfer efficiency across different remote and unmanned Internet of Things (IoT) applications, including drones for radiation monitoring and smart agriculture.

Suggested Citation

  • Aqeel Mahmood Jawad & Rosdiadee Nordin & Haider Mahmood Jawad & Sadik Kamel Gharghan & Asma’ Abu-Samah & Mahmood Jawad Abu-Alshaeer & Nor Fadzilah Abdullah, 2022. "Wireless Drone Charging Station Using Class-E Power Amplifier in Vertical Alignment and Lateral Misalignment Conditions," Energies, MDPI, vol. 15(4), pages 1-29, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1298-:d:746634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmoud Wagih & Abiodun Komolafe & Bahareh Zaghari, 2020. "Separation-Independent Wearable 6.78 MHz Near-Field Radiative Wireless Power Transfer using Electrically Small Embroidered Textile Coils," Energies, MDPI, vol. 13(3), pages 1-14, January.
    2. Tommaso Campi & Silvano Cruciani & Mauro Feliziani, 2018. "Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil," Energies, MDPI, vol. 11(2), pages 1-15, February.
    3. Ali Bin Junaid & Aleksay Konoiko & Yahya Zweiri & M. Necip Sahinkaya & Lakmal Seneviratne, 2017. "Autonomous Wireless Self-Charging for Multi-Rotor Unmanned Aerial Vehicles," Energies, MDPI, vol. 10(6), pages 1-14, June.
    4. Eteng, Akaa Agbaeze & Rahim, Sharul Kamal Abdul & Leow, Chee Yen & Jayaprakasam, Suhanya & Chew, Beng Wah, 2017. "Low-power near-field magnetic wireless energy transfer links: A review of architectures and design approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 486-505.
    5. Linlin Tan & Ming Zhang & Songcen Wang & Shulei Pan & Zhenxing Zhang & Jiacheng Li & Xueliang Huang, 2019. "The Design and Optimization of a Wireless Power Transfer System Allowing Random Access for Multiple Loads," Energies, MDPI, vol. 12(6), pages 1-19, March.
    6. Chhawchharia, Saransch & Sahoo, Sarat Kumar & Balamurugan, M. & Sukchai, Sukruedee & Yanine, Fernando, 2018. "Investigation of wireless power transfer applications with a focus on renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 888-902.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullah Mohiuddin & Tarek Taha & Yahya Zweiri & Dongming Gan, 2019. "UAV Payload Transportation via RTDP Based Optimized Velocity Profiles," Energies, MDPI, vol. 12(16), pages 1-25, August.
    2. Mohammad Fatin Fatihur Rahman & Shurui Fan & Yan Zhang & Lei Chen, 2021. "A Comparative Study on Application of Unmanned Aerial Vehicle Systems in Agriculture," Agriculture, MDPI, vol. 11(1), pages 1-26, January.
    3. Marojahan Tampubolon & Laskar Pamungkas & Huang-Jen Chiu & Yu-Chen Liu & Yao-Ching Hsieh, 2018. "Dynamic Wireless Power Transfer for Logistic Robots," Energies, MDPI, vol. 11(3), pages 1-13, February.
    4. Aqeel Mahmood Jawad & Rosdiadee Nordin & Sadik Kamel Gharghan & Haider Mahmood Jawad & Mahamod Ismail & Mahmood Jawad Abu-AlShaeer, 2018. "Single-Tube and Multi-Turn Coil Near-Field Wireless Power Transfer for Low-Power Home Appliances," Energies, MDPI, vol. 11(8), pages 1-19, July.
    5. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2021. "Efficient Wireless Drone Charging Pad for Any Landing Position and Orientation," Energies, MDPI, vol. 14(23), pages 1-14, December.
    6. Andrea Carloni & Federico Baronti & Roberto Di Rienzo & Roberto Roncella & Roberto Saletti, 2021. "On the Sizing of the DC-Link Capacitor to Increase the Power Transfer in a Series-Series Inductive Resonant Wireless Charging Station," Energies, MDPI, vol. 14(3), pages 1-13, January.
    7. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2019. "Innovative Design of Drone Landing Gear Used as a Receiving Coil in Wireless Charging Application," Energies, MDPI, vol. 12(18), pages 1-20, September.
    8. Koen Bastiaens & Dave C. J. Krop & Elena A. Lomonova, 2022. "Spectral Element-Based Multi-Physical Modeling Framework for Axisymmetric Wireless Power Transfer Systems," Energies, MDPI, vol. 15(9), pages 1-30, April.
    9. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    11. Ghada Bouattour & Mohamed Elhawy & Slim Naifar & Christian Viehweger & Houda Ben Jmaa Derbel & Olfa Kanoun, 2020. "Multiplexed Supply of a MISO Wireless Power Transfer System for Battery-Free Wireless Sensors," Energies, MDPI, vol. 13(5), pages 1-23, March.
    12. Tommaso Campi & Silvano Cruciani & Mauro Feliziani, 2018. "Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil," Energies, MDPI, vol. 11(2), pages 1-15, February.
    13. Aleksandra Tiurlikova & Nikita Stepanov & Konstantin Mikhaylov, 2019. "Wireless power transfer from unmanned aerial vehicle to low-power wide area network nodes: Performance and business prospects for LoRaWAN," International Journal of Distributed Sensor Networks, , vol. 15(11), pages 15501477198, November.
    14. Xie, Haonan & Jiang, Meihui & Zhang, Dongdong & Goh, Hui Hwang & Ahmad, Tanveer & Liu, Hui & Liu, Tianhao & Wang, Shuyao & Wu, Thomas, 2023. "IntelliSense technology in the new power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    15. Linlin Tan & Kamal Eldin Idris Elnail & Minghao Ju & Xueliang Huang, 2019. "Comparative Analysis and Design of the Shielding Techniques in WPT Systems for Charging EVs," Energies, MDPI, vol. 12(11), pages 1-20, June.
    16. Fengshuo Yang & Jinhai Jiang & Chuanyu Sun & Aina He & Wanqi Chen & Yu Lan & Kai Song, 2022. "Efficiency Improvement of Magnetic Coupler with Nanocrystalline Alloy Film for UAV Wireless Charging System with a Carbon Fiber Fuselage," Energies, MDPI, vol. 15(22), pages 1-17, November.
    17. Andrea Carloni & Federico Baronti & Roberto Di Rienzo & Roberto Roncella & Roberto Saletti, 2020. "Effect of the DC-Link Capacitor Size on the Wireless Inductive-Coupled Opportunity-Charging of a Drone Battery," Energies, MDPI, vol. 13(10), pages 1-13, May.
    18. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    19. Lin Chen & Jianfeng Hong & Zaifa Lin & Daqing Luo & Mingjie Guan & Wenxiang Chen, 2020. "A Converter with Automatic Stage Transition Control for Inductive Power Transfer," Energies, MDPI, vol. 13(20), pages 1, October.
    20. Giuseppina Monti & Mauro Mongiardo & Ben Minnaert & Alessandra Costanzo & Luciano Tarricone, 2020. "Optimal Terminations for a Single-Input Multiple-Output Resonant Inductive WPT Link," Energies, MDPI, vol. 13(19), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1298-:d:746634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.