IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3145-d801917.html
   My bibliography  Save this article

Spectral Element-Based Multi-Physical Modeling Framework for Axisymmetric Wireless Power Transfer Systems

Author

Listed:
  • Koen Bastiaens

    (Department of Electrical Engineering, Electromechanics and Power Electronics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

  • Dave C. J. Krop

    (Department of Electrical Engineering, Electromechanics and Power Electronics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

  • Elena A. Lomonova

    (Department of Electrical Engineering, Electromechanics and Power Electronics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands)

Abstract

This paper concerns a multi-physical modeling framework based on the spectral element method (SEM) for axisymmetric wireless power transfer systems. The modeling framework consists of an electromagnetic and a thermal model. The electromagnetic model allows for eddy currents in source- and non-source regions to be included in the analysis. The SEM is a numerical method, which is particularly advantageous in 2D problems for which the skin-depth is several orders of magnitude smaller compared to the object dimensions and complex geometrical shapes are absent. The SEM applies high-order trial functions to obtain the approximate solution to a boundary-value problem. To that end, the approximation is expressed as an interpolation at a set of nodal points, i.e., the nodal representation. The trial functions are Legendre polynomials, which reduces the complexity of the formulation. Furthermore, numerical integration is performed through Gaussian quadratures. In order to verify the SEM, a benchmark system is modeled using both the SEM and a finite element-based commercial software. The differences in the SEM solutions, i.e., magnetic vector potential and temperature distribution, and the discrepancies in essential post-processing quantities are assessed with respect to the finite element solutions. Additionally, the computational efforts of both methods are evaluated in terms of the sparsity, number of degrees of freedom, and non-zero elements.

Suggested Citation

  • Koen Bastiaens & Dave C. J. Krop & Elena A. Lomonova, 2022. "Spectral Element-Based Multi-Physical Modeling Framework for Axisymmetric Wireless Power Transfer Systems," Energies, MDPI, vol. 15(9), pages 1-30, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3145-:d:801917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linlin Tan & Ming Zhang & Songcen Wang & Shulei Pan & Zhenxing Zhang & Jiacheng Li & Xueliang Huang, 2019. "The Design and Optimization of a Wireless Power Transfer System Allowing Random Access for Multiple Loads," Energies, MDPI, vol. 12(6), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aqeel Mahmood Jawad & Rosdiadee Nordin & Haider Mahmood Jawad & Sadik Kamel Gharghan & Asma’ Abu-Samah & Mahmood Jawad Abu-Alshaeer & Nor Fadzilah Abdullah, 2022. "Wireless Drone Charging Station Using Class-E Power Amplifier in Vertical Alignment and Lateral Misalignment Conditions," Energies, MDPI, vol. 15(4), pages 1-29, February.
    2. Dong-Hun Woo & Hwa-Rang Cha & Rae-Young Kim, 2020. "Resonant Network Design Method to Reduce Influence of Mutual Inductance between Receivers in Multi-Output Omnidirectional Wireless Power Transfer Systems," Energies, MDPI, vol. 13(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3145-:d:801917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.