IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8890-d983129.html
   My bibliography  Save this article

Energy Recovery from Natural Gas Pressure Reduction Stations with the Use of Turboexpanders: Static and Dynamic Simulations

Author

Listed:
  • Paweł Bielka

    (Independent Expert, 47-330 Zdzieszowice, Poland)

  • Szymon Kuczyński

    (Gas Engineering Department, Drilling, Oil and Gas Faculty, AGH University of Science and Technology, 30 Av., 30-059 Kraków, Poland)

Abstract

The application of expansion turbines at natural gas pressure reduction stations (PRS) is considered in order to recover energy contained in the natural gas. This energy is irretrievably lost at the reduction stations which use the traditional pressure reducer. Expanders allow for the electricity production for PRS own needs and for resale. The paper presents an analysis of the possibility of using turboexpanders at PRS in Poland. Authors performed static simulations for the assumed data sets and dynamic simulations for annual data from selected representative natural gas reduction and measurement stations. Energy balances are presented for the discussed scenarios that compare the energy requirements of natural gas pressure reduction stations which use a classic pressure reducer or turboexpander (TE). Using static simulations, authors investigated whether the use of a turboexpander is economically justified for the case if it is used only to supply the reduction station with electricity. Dynamic analyses were carried out using real data. In addition, static analyses were performed for a natural gas reduction and measurement station using a PEM fuel cell for the production of electricity in a combined gas heating system. At higher inlet temperatures and pressures, the expansion process was more economical due to the lower heat power requirement and the greater amount of produced electricity. The PRS with the turboexpander compared to the PRS with the reducer required the supply of thermal energy which did not allow the PRS to lower operating costs for the assumed prices of heat and electricity. The reduction system with the PEM fuel cell in the combined heating system positively achieved lower operating costs of the PRS (without taking into account the investment costs). Total annual costs for PRS with a reducer was PLN 1,593,167.04, and for PRS with TE + PEM PLN 1,430,595.60—the difference was PLN 108,571.44 in favor of the arrangement with TE and PEM. The payback time should be investigated, although the use of such a system gives the impression of oversizing. An increase in the electricity purchase price and a decrease in the natural gas purchase price may contribute to the investment in the future.

Suggested Citation

  • Paweł Bielka & Szymon Kuczyński, 2022. "Energy Recovery from Natural Gas Pressure Reduction Stations with the Use of Turboexpanders: Static and Dynamic Simulations," Energies, MDPI, vol. 15(23), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8890-:d:983129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8890/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cascio, Ermanno Lo & Ma, Zhenjun & Schenone, Corrado, 2018. "Performance assessment of a novel natural gas pressure reduction station equipped with parabolic trough solar collectors," Renewable Energy, Elsevier, vol. 128(PA), pages 177-187.
    2. Chaczykowski, M. & Osiadacz, A.J. & Uilhoorn, F.E., 2011. "Exergy-based analysis of gas transmission system with application to Yamal-Europe pipeline," Applied Energy, Elsevier, vol. 88(6), pages 2219-2230, June.
    3. Szymon Kuczyński & Mariusz Łaciak & Andrzej Olijnyk & Adam Szurlej & Tomasz Włodek, 2019. "Techno-Economic Assessment of Turboexpander Application at Natural Gas Regulation Stations," Energies, MDPI, vol. 12(4), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaetano Morgese & Francesco Fornarelli & Paolo Oresta & Tommaso Capurso & Michele Stefanizzi & Sergio M. Camporeale & Marco Torresi, 2020. "Fast Design Procedure for Turboexpanders in Pressure Energy Recovery Applications," Energies, MDPI, vol. 13(14), pages 1-26, July.
    2. Lo Cascio, Ermanno & De Schutter, Bart & Schenone, Corrado, 2018. "Flexible energy harvesting from natural gas distribution networks through line-bagging," Applied Energy, Elsevier, vol. 229(C), pages 253-263.
    3. Yao, Sheng & Zhang, Yufeng & Deng, Na & Yu, Xiaohui & Dong, Shengming, 2019. "Performance research on a power generation system using twin-screw expanders for energy recovery at natural gas pressure reduction stations under off-design conditions," Applied Energy, Elsevier, vol. 236(C), pages 1218-1230.
    4. Olfati, Mohammad & Bahiraei, Mehdi & Nazari, Saeed & Veysi, Farzad, 2020. "A comprehensive assessment of low-temperature preheating process in natural gas pressure reduction stations to better benefit from solar energy," Energy, Elsevier, vol. 209(C).
    5. Yahya Sheikhnejad & João Simões & Nelson Martins, 2020. "Energy Harvesting by a Novel Substitution for Expansion Valves: Special Focus on City Gate Stations of High-Pressure Natural Gas Pipelines," Energies, MDPI, vol. 13(4), pages 1-18, February.
    6. Stanek, Wojciech & Simla, Tomasz & Rutczyk, Bartłomiej & Kabaj, Adam & Buliński, Zbigniew & Szczygieł, Ireneusz & Czarnowska, Lucyna & Krysiński, Tomasz & Gładysz, Paweł, 2019. "Thermo-ecological assessment of Stirling engine with regenerator fed with cryogenic exergy of liquid natural gas (LNG)," Energy, Elsevier, vol. 185(C), pages 1045-1053.
    7. Pajączek, Krzysztof & Kostowski, Wojciech & Stanek, Wojciech, 2020. "Natural gas liquefaction using the high-pressure potential in the gas transmission system," Energy, Elsevier, vol. 202(C).
    8. Kostowski, Wojciech J. & Usón, Sergio, 2013. "Thermoeconomic assessment of a natural gas expansion system integrated with a co-generation unit," Applied Energy, Elsevier, vol. 101(C), pages 58-66.
    9. Qinglin Cheng & Yifan Gan & Wenkun Su & Yang Liu & Wei Sun & Ying Xu, 2017. "Research on Exergy Flow Composition and Exergy Loss Mechanisms for Waxy Crude Oil Pipeline Transport Processes," Energies, MDPI, vol. 10(12), pages 1-20, November.
    10. Ali Rafiei Sefiddashti & Reza Shirmohammadi & Fontina Petrakopoulou, 2021. "Efficiency Enhancement of Gas Turbine Systems with Air Injection Driven by Natural Gas Turboexpanders," Sustainability, MDPI, vol. 13(19), pages 1-17, October.
    11. Shouxiang Wang & Shuangchen Yuan, 2019. "Interval Energy Flow Analysis in Integrated Electrical and Natural-Gas Systems Considering Uncertainties," Energies, MDPI, vol. 12(11), pages 1-19, May.
    12. Li, Chenghao & Zheng, Siyang & Chen, Yufeng & Zeng, Zhiyong, 2021. "Proposal and parametric analysis of an innovative natural gas pressure reduction and liquefaction system for efficient exergy recovery and LNG storage," Energy, Elsevier, vol. 223(C).
    13. Barone, Giovanni & Buonomano, Annamaria & Calise, Francesco & Forzano, Cesare & Palombo, Adolfo, 2019. "Energy recovery through natural gas turboexpander and solar collectors: Modelling and thermoeconomic optimization," Energy, Elsevier, vol. 183(C), pages 1211-1232.
    14. Mohamadi-Baghmolaei, Mohamad & Hajizadeh, Abdollah & Zahedizadeh, Parviz & Azin, Reza & Zendehboudi, Sohrab, 2021. "Evaluation of hybridized performance of amine scrubbing plant based on exergy, energy, environmental, and economic prospects: A gas sweetening plant case study," Energy, Elsevier, vol. 214(C).
    15. Francesco Calise & Maria Vicidomini & Mário Costa & Qiuwang Wang & Poul Alberg Østergaard & Neven Duić, 2019. "Toward an Efficient and Sustainable Use of Energy in Industries and Cities," Energies, MDPI, vol. 12(16), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8890-:d:983129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.