IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8710-d978089.html
   My bibliography  Save this article

Survey on Optimization Models for Energy-Efficient Computing Systems

Author

Listed:
  • Joanna Józefowska

    (Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland)

  • Mariusz Nowak

    (Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland)

  • Rafał Różycki

    (Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland)

  • Grzegorz Waligóra

    (Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

Energy has become the most expensive and critical resource for all kinds of human activities. At the same time, all areas of our lives strongly depend on Information and Communication Technologies (ICT). It is not surprising that energy efficiency has become an issue in developing and running ICT systems. This paper presents a survey of the optimization models developed in order to reduce energy consumption by ICT systems. Two main approaches are presented, showing the trade-off between energy consumption and quality of service (QoS).

Suggested Citation

  • Joanna Józefowska & Mariusz Nowak & Rafał Różycki & Grzegorz Waligóra, 2022. "Survey on Optimization Models for Energy-Efficient Computing Systems," Energies, MDPI, vol. 15(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8710-:d:978089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Weogon glarz, 1981. "Project Scheduling with Continuously-Divisible, Doubly Constrained Resources," Management Science, INFORMS, vol. 27(9), pages 1040-1053, September.
    2. Dawn Nafus & Eve M. Schooler & Karly Ann Burch, 2021. "Carbon-Responsive Computing: Changing the Nexus between Energy and Computing," Energies, MDPI, vol. 14(21), pages 1-26, October.
    3. Su, Ling-Huey & Lien, Chun-Yuan, 2009. "Scheduling parallel machines with resource-dependent processing times," International Journal of Production Economics, Elsevier, vol. 117(2), pages 256-266, February.
    4. Zheming Yan & Rui Shi & Zhiming Yang, 2018. "ICT Development and Sustainable Energy Consumption: A Perspective of Energy Productivity," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    5. Jacek Blazewicz & Klaus H. Ecker & Erwin Pesch & Günter Schmidt & Malgorzata Sterna & Jan Weglarz, 2019. "Handbook on Scheduling," International Handbooks on Information Systems, Springer, edition 2, number 978-3-319-99849-7, November.
    6. Edis, Emrah B. & Oguz, Ceyda & Ozkarahan, Irem, 2013. "Parallel machine scheduling with additional resources: Notation, classification, models and solution methods," European Journal of Operational Research, Elsevier, vol. 230(3), pages 449-463.
    7. Lei WANG & Tong ZHU, 2022. "Will the Digital Economy Increase Energy Consumption? – An Analysis Based on the ICT Application Research," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 1-18, March.
    8. Joanna Józefowska & Marek Mika & Rafał Różycki & Grzegorz Waligóra & Jan Weglarz, 2000. "Solving the discrete-continuous project scheduling problem via its discretization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(3), pages 489-499, December.
    9. Moshe Dror & Helman I. Stern & Jan Karel Lenstra, 1987. "Parallel Machine Scheduling: Processing Rates Dependent on Number of Jobs in Operation," Management Science, INFORMS, vol. 33(8), pages 1001-1009, August.
    10. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.
    11. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rishan Adha & Cheng-Yih Hong & Somya Agrawal & Li-Hua Li, 2023. "ICT, carbon emissions, climate change, and energy demand nexus: The potential benefit of digitalization in Taiwan," Energy & Environment, , vol. 34(5), pages 1619-1638, August.
    2. Huaxue Zhao & Yu Cheng & Ruijing Zheng, 2022. "Impact of the Digital Economy on PM 2.5 : Experience from the Middle and Lower Reaches of the Yellow River Basin," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    3. Steffen Dalsgaard, 2022. "Can IT Resolve the Climate Crisis? Sketching the Role of an Anthropology of Digital Technology," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    4. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).
    5. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    6. Tilman Santarius & Johanna Pohl & Steffen Lange, 2020. "Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing?," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    7. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    8. Ke-Liang Wang & Rui-Rui Zhu & Yun-He Cheng, 2022. "Does the Development of Digital Finance Contribute to Haze Pollution Control? Evidence from China," Energies, MDPI, vol. 15(7), pages 1-21, April.
    9. Lee, Chien-Chiang & Yuan, Zihao & Wang, Qiaoru, 2022. "How does information and communication technology affect energy security? International evidence," Energy Economics, Elsevier, vol. 109(C).
    10. Jozefowska, Joanna & Weglarz, Jan, 1998. "On a methodology for discrete-continuous scheduling," European Journal of Operational Research, Elsevier, vol. 107(2), pages 338-353, June.
    11. Williams, Laurence & Sovacool, Benjamin K. & Foxon, Timothy J., 2022. "The energy use implications of 5G: Reviewing whole network operational energy, embodied energy, and indirect effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Axenbeck, Janna & Berner, Anne & Kneib, Thomas, 2022. "What drives the relationship between digitalization and industrial energy demand? Exploring firm-level heterogeneity," ZEW Discussion Papers 22-059, ZEW - Leibniz Centre for European Economic Research.
    13. Lei Fan & Yunyun Zhang & Meilin Jin & Qiang Ma & Jing Zhao, 2022. "Does New Digital Infrastructure Promote the Transformation of the Energy Structure? The Perspective of China’s Energy Industry Chain," Energies, MDPI, vol. 15(23), pages 1-18, November.
    14. Xiaoying Lei & Yifei Ma & Jinkai Ke & Caihong Zhang, 2023. "The Non-Linear Impact of the Digital Economy on Carbon Emissions Based on a Mediated Effects Model," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    15. Jiang, Peng & Fan, Yee Van & Klemeš, Jiří Jaromír, 2021. "Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities," Applied Energy, Elsevier, vol. 285(C).
    16. Li, Xiang & Lepour, Dorsan & Heymann, Fabian & Maréchal, François, 2023. "Electrification and digitalization effects on sectoral energy demand and consumption: A prospective study towards 2050," Energy, Elsevier, vol. 279(C).
    17. Nicolas Moreau & Thibault Pirson & Grégoire Le Brun & Thibault Delhaye & Georgiana Sandu & Antoine Paris & David Bol & Jean-Pierre Raskin, 2021. "Could Unsustainable Electronics Support Sustainability?," Sustainability, MDPI, vol. 13(12), pages 1-7, June.
    18. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    19. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    20. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8710-:d:978089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.