IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7880-d951632.html
   My bibliography  Save this article

Techno-Economic Optimization of an Off-Grid Hybrid Power Generation for SRM IST, Delhi-NCR Campus

Author

Listed:
  • Shilpa Sambhi

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad 201204, India)

  • Himanshu Sharma

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad 201204, India)

  • Pankaj Kumar

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad 201204, India)

  • Georgios Fotis

    (Department of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education, 14121 Athens, Greece)

  • Vasiliki Vita

    (Department of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education, 14121 Athens, Greece)

  • Lambros Ekonomou

    (Department of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education, 14121 Athens, Greece)

Abstract

The limited availability of fossil fuels such as coal and increasing air pollution levels due to the burning of coal have pushed the trend of generating electricity from fossil fuels to generating it from locally available renewable resources. It is expected that the cost of electricity will decrease when locally available renewable resources are used. In this paper, it was proposed to commission a solar PV system in a part of an academic building of SRM IST University. The present study is an effort in-line with many initiatives taken up by the Indian Government. The performance index of solar PV system was analyzed. Supporting data were obtained from the NASA PDAV tool and then techno-economical analysis was carried out on HOMER. The average performance ratio and capacity factor of the solar PV system were obtained as 64.49% and 14.90%, respectively. For the optimal configuration, the net present cost and the levelized cost of electricity are $639,981 and $0.34 per kWh, respectively. As per the estimation, there will be no air pollution due to the proposed configuration, whereas if only a diesel generator is commissioned, then 200,417 kg of carbon dioxide will be emitted annually.

Suggested Citation

  • Shilpa Sambhi & Himanshu Sharma & Pankaj Kumar & Georgios Fotis & Vasiliki Vita & Lambros Ekonomou, 2022. "Techno-Economic Optimization of an Off-Grid Hybrid Power Generation for SRM IST, Delhi-NCR Campus," Energies, MDPI, vol. 15(21), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7880-:d:951632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leithon, Johann & Werner, Stefan & Koivunen, Visa, 2020. "Cost-aware renewable energy management: Centralized vs. distributed generation," Renewable Energy, Elsevier, vol. 147(P1), pages 1164-1179.
    2. Aryanpur, Vahid & Atabaki, Mohammad Saeid & Marzband, Mousa & Siano, Pierluigi & Ghayoumi, Kiarash, 2019. "An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 58-74.
    3. Maen Z. Kreishan & George P. Fotis & Vasiliki Vita & Lambros Ekonomou, 2016. "Distributed Generation Islanding Effect on Distribution Networks and End User Loads Using the Load Sharing Islanding Method," Energies, MDPI, vol. 9(11), pages 1-24, November.
    4. Das, Sayan & Ray, Avishek & De, Sudipta, 2020. "Optimum combination of renewable resources to meet local power demand in distributed generation: A case study for a remote place of India," Energy, Elsevier, vol. 209(C).
    5. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    6. Nenad Sijakovic & Aleksandar Terzic & Georgios Fotis & Ioannis Mentis & Magda Zafeiropoulou & Theodoros I. Maris & Emmanouil Zoulias & Charalambos Elias & Vladan Ristic & Vasiliki Vita, 2022. "Active System Management Approach for Flexibility Services to the Greek Transmission and Distribution System," Energies, MDPI, vol. 15(17), pages 1-31, August.
    7. Razmjoo, A. & Gakenia Kaigutha, L. & Vaziri Rad, M.A. & Marzband, M. & Davarpanah, A. & Denai, M., 2021. "A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area," Renewable Energy, Elsevier, vol. 164(C), pages 46-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    2. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Georgios Fotis & Vasiliki Vita, 2023. "Technical and Economic Analysis of Solar PV/Diesel Generator Smart Hybrid Power Plant Using Different Battery Storage Technologies for SRM IST, Delhi-NCR Campus," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    3. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Giraja Shankar Chaurasia & Georgios Fotis & Vasiliki Vita & Lambros Ekonomou & Christos Pavlatos, 2022. "Economic Feasibility of a Renewable Integrated Hybrid Power Generation System for a Rural Village of Ladakh," Energies, MDPI, vol. 15(23), pages 1-25, December.
    4. Vasiliki Vita & Georgios Fotis & Christos Pavlatos & Valeri Mladenov, 2023. "A New Restoration Strategy in Microgrids after a Blackout with Priority in Critical Loads," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    5. Samrat Chakraborty & Debottam Mukherjee & Pabitra Kumar Guchhait & Somudeep Bhattacharjee & Almoataz Youssef Abdelaziz & Adel El-Shahat, 2023. "Optimum Design of a Renewable-Based Integrated Energy System in Autonomous Mode for a Remote Hilly Location in Northeastern India," Energies, MDPI, vol. 16(4), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Giraja Shankar Chaurasia & Georgios Fotis & Vasiliki Vita & Lambros Ekonomou & Christos Pavlatos, 2022. "Economic Feasibility of a Renewable Integrated Hybrid Power Generation System for a Rural Village of Ladakh," Energies, MDPI, vol. 15(23), pages 1-25, December.
    2. Vasiliki Vita & Georgios Fotis & Christos Pavlatos & Valeri Mladenov, 2023. "A New Restoration Strategy in Microgrids after a Blackout with Priority in Critical Loads," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    3. Ali Kaviani & Fatemeh Razi Astaraei & Alireza Aslani & Seyed Ali Mousavi, 2024. "A powerful checklist for the selection of optimal scenarios between local renewable resources and grid extension using exergy, financial, and social analyses," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 3735-3766, February.
    4. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Georgios Fotis & Vasiliki Vita, 2023. "Technical and Economic Analysis of Solar PV/Diesel Generator Smart Hybrid Power Plant Using Different Battery Storage Technologies for SRM IST, Delhi-NCR Campus," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    5. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    6. Ozturk, Zafer & Terkes, Musa & Demirci, Alpaslan, 2024. "Optimal planning of hybrid power systems under economic variables and different climatic regions: A case study of Türkiye," Renewable Energy, Elsevier, vol. 232(C).
    7. Alvin Henao & Luceny Guzman, 2024. "Exploration of Alternatives to Reduce the Gap in Access to Electricity in Rural Communities—Las Nubes Village Case (Barranquilla, Colombia)," Energies, MDPI, vol. 17(1), pages 1-19, January.
    8. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Terfa, H. & Baghli, L. & Bhandari, R., 2022. "Impact of renewable energy micro-power plants on power grids over Africa," Energy, Elsevier, vol. 238(PA).
    10. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    11. Silviu Nate & Yuriy Bilan & Mariia Kurylo & Olena Lyashenko & Piotr Napieralski & Ganna Kharlamova, 2021. "Mineral Policy within the Framework of Limited Critical Resources and a Green Energy Transition," Energies, MDPI, vol. 14(9), pages 1-32, May.
    12. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    13. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    14. Aktas, Ilter Sahin, 2024. "Techno-economic feasibility analysis and optimisation of on/off-grid wind-biogas-CHP hybrid energy system for the electrification of university campus: A case study," Renewable Energy, Elsevier, vol. 237(PC).
    15. Pei Juan Yew & Deepak Chaulagain & Noel Ngando Same & Jaebum Park & Jeong-Ok Lim & Jeung-Soo Huh, 2024. "Optimal Hybrid Renewable Energy System to Accelerate a Sustainable Energy Transition in Johor, Malaysia," Sustainability, MDPI, vol. 16(17), pages 1-24, September.
    16. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    17. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    18. Abdul Munim Rehmani & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Muhammad Awais, 2023. "Techno-Economic-Environmental Assessment of an Isolated Rural Micro-Grid from a Mid-Career Repowering Perspective," Sustainability, MDPI, vol. 15(3), pages 1-35, January.
    19. Miranda, Rodolfo Farías & Salgado-Herrera, Nadia Maria & Rodríguez-Hernández, Osvaldo & Rodríguez-Rodríguez, Juan Ramon & Robles, Miguel & Ruiz-Robles, Dante & Venegas-Rebollar, Vicente, 2022. "Distributed generation in low-voltage DC systems by wind energy in the Baja California Peninsula, Mexico," Energy, Elsevier, vol. 242(C).
    20. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7880-:d:951632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.