IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7518-d940199.html
   My bibliography  Save this article

Techno-Economic Model for Scaling Up of Hydrogen Refueling Stations

Author

Listed:
  • Roberta Caponi

    (Department of Engineering Sciences, Università degli Studi Guglielmo Marconi, 00193 Rome, Italy)

  • Enrico Bocci

    (Department of Engineering Sciences, Università degli Studi Guglielmo Marconi, 00193 Rome, Italy)

  • Luca Del Zotto

    (CREAT, Centro di Ricerca su Energia, Ambiente e Territorio, Università Telematica eCampus, 22060 Novedrate, Italy)

Abstract

In a recent publication, the Hydrogen Council states that scaling up to greater production volumes leads to significant cost savings as a consequence of the industrialization of equipment manufacturing, increased utilization, standardization, and improvements in system efficiency and flexibility. In this study, a component-oriented techno-economic model is applied to five different European hydrogen refueling stations within the 3Emotion project, which is planned to ensure capacities sufficient for increasing a fleet to 100 fuel cell buses. The investigation of the various cases shows that the levelized cost of hydrogen (LCOH) for large-scale applications will be in the range of about 4 €/kg to 7 €/kg within the boundaries analyzed. On-site production facilities were found to be the lower-cost design, benefiting from the high volumes at stake and the economy of scale with respect to decentralized production due to the significant costs associated with retail hydrogen and transport. This study also illustrates the effects on the LCOH of varying the hydrogen delivery and production prices using a sensitivity analysis. The results show that, by utilizing high-capacity trailers, the costs associated with delivery could be reduced by 30%. Furthermore, green hydrogen production could be a competitive solution if coupled with low electricity prices, resulting in an LCOH between 4.21 €/kg and 6.80 €/kg.

Suggested Citation

  • Roberta Caponi & Enrico Bocci & Luca Del Zotto, 2022. "Techno-Economic Model for Scaling Up of Hydrogen Refueling Stations," Energies, MDPI, vol. 15(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7518-:d:940199
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Apostolou, D. & Xydis, G., 2019. "A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. repec:cdl:itsdav:qt65f0n732 is not listed on IDEAS
    3. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    4. repec:cdl:itsdav:qt7p3500g2 is not listed on IDEAS
    5. Tang, Ou & Rehme, Jakob & Cerin, Pontus, 2022. "Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: On-grid or off-grid?," Energy, Elsevier, vol. 241(C).
    6. Ludvik Viktorsson & Jukka Taneli Heinonen & Jon Bjorn Skulason & Runar Unnthorsson, 2017. "A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station," Energies, MDPI, vol. 10(6), pages 1-15, May.
    7. Arora, Akhil & Zantye, Manali S. & Hasan, M.M. Faruque, 2022. "Sustainable hydrogen manufacturing via renewable-integrated intensified process for refueling stations," Applied Energy, Elsevier, vol. 311(C).
    8. repec:cdl:itsdav:qt1804p4vw is not listed on IDEAS
    9. Zakari, Abdulrasheed & Tawiah, Vincent & Khan, Irfan & Alvarado, Rafael & Li, Guo, 2022. "Ensuring sustainable consumption and production pattern in Africa: Evidence from green energy perspectives," Energy Policy, Elsevier, vol. 169(C).
    10. Alessandra Perna & Mariagiovanna Minutillo & Simona Di Micco & Elio Jannelli, 2022. "Design and Costs Analysis of Hydrogen Refuelling Stations Based on Different Hydrogen Sources and Plant Configurations," Energies, MDPI, vol. 15(2), pages 1-22, January.
    11. repec:cdl:itsdav:qt51c0937x is not listed on IDEAS
    12. Fan, Jing-Li & Yu, Pengwei & Li, Kai & Xu, Mao & Zhang, Xian, 2022. "A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China," Energy, Elsevier, vol. 242(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agustín Álvarez Coomonte & Zacarías Grande Andrade & Rocio Porras Soriano & José Antonio Lozano Galant, 2024. "Review of the Planning and Distribution Methodologies to Locate Hydrogen Infrastructure in the Territory," Energies, MDPI, vol. 17(1), pages 1-25, January.
    2. Rafael Pereira & Vitor Monteiro & Joao L. Afonso & Joni Teixeira, 2024. "Hydrogen Refueling Stations: A Review of the Technology Involved from Key Energy Consumption Processes to Related Energy Management Strategies," Energies, MDPI, vol. 17(19), pages 1-16, September.
    3. Hajjaji, Mohamed & Cristofari, Christian, 2024. "Economic and technical evaluation of on-site electrolysis solar hydrogen refueling station in Corsica: A case study of Ajaccio," Renewable Energy, Elsevier, vol. 231(C).
    4. Tareq Salameh & Abdul Ghani Olabi & Mohammad Ali Abdelkareem & Mohd Shahbudin Masdar & Siti Kartom Kamarudin & Enas Taha Sayed, 2023. "Integrated Energy System Powered a Building in Sharjah Emirates in the United Arab Emirates," Energies, MDPI, vol. 16(2), pages 1-20, January.
    5. Alessandro Guzzini & Giovanni Brunaccini & Davide Aloisio & Marco Pellegrini & Cesare Saccani & Francesco Sergi, 2023. "A New Geographic Information System (GIS) Tool for Hydrogen Value Chain Planning Optimization: Application to Italian Highways," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    6. Ahmadullah, Ahmad Bilal & Rahimi, Mohammad Amin & Ulfat, Dawood Shah & Irshad, Ahmad Shah & Doost, Ziaul Haq & Wali, Najibullah & Karimi, Bashir Ahmad, 2025. "Decarbonizing Afghanistan: The most cost-effective renewable energy system for hydrogen production," Energy, Elsevier, vol. 324(C).
    7. Ruggero Angelico & Ferruccio Giametta & Biagio Bianchi & Pasquale Catalano, 2025. "Green Hydrogen for Energy Transition: A Critical Perspective," Energies, MDPI, vol. 18(2), pages 1-47, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2022. "A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern clim," Energy, Elsevier, vol. 261(PB).
    2. Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
    3. Ahmadullah, Ahmad Bilal & Rahimi, Mohammad Amin & Ulfat, Dawood Shah & Irshad, Ahmad Shah & Doost, Ziaul Haq & Wali, Najibullah & Karimi, Bashir Ahmad, 2025. "Decarbonizing Afghanistan: The most cost-effective renewable energy system for hydrogen production," Energy, Elsevier, vol. 324(C).
    4. Fanyue Qian & Weijun Gao & Dan Yu & Yongwen Yang & Yingjun Ruan, 2022. "An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan," Energies, MDPI, vol. 16(1), pages 1-23, December.
    5. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    6. Li, Xinying & Tang, Xu & Ma, Meiyan & Wang, Min & Xu, Chuanbo, 2024. "Levelized cost analysis of onshore wind-powered hydrogen production system in China considering landform heterogeneity," Energy, Elsevier, vol. 313(C).
    7. Genovese, M. & Piraino, F. & Fragiacomo, P., 2024. "3E analysis of a virtual hydrogen valley supported by railway-based H2 delivery for multi-transportation service," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    8. Javier Barba & Miguel Cañas-Carretón & Miguel Carrión & Gabriel R. Hernández-Labrado & Carlos Merino & José Ignacio Muñoz & Rafael Zárate-Miñano, 2025. "Integrating Hydrogen into Power Systems: A Comprehensive Review," Sustainability, MDPI, vol. 17(13), pages 1-64, July.
    9. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).
    10. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2022. "Reprint of: Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 250(C).
    11. Mohideen, Mohamedazeem M. & Subramanian, Balachandran & Sun, Jingyi & Ge, Jing & Guo, Han & Radhamani, Adiyodi Veettil & Ramakrishna, Seeram & Liu, Yong, 2023. "Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    12. Konstantin Gomonov & Marina Reshetnikova & Svetlana Ratner, 2023. "Economic Analysis of Recently Announced Green Hydrogen Projects in Russia: A Multiple Case Study," Energies, MDPI, vol. 16(10), pages 1-15, May.
    13. Chen, Xiaoyuan & Pang, Zhou & Jiang, Shan & Zhang, Mingshun & Feng, Juan & Fu, Lin & Shen, Boyang, 2023. "A novel LH2/GH2/battery multi-energy vehicle supply station using 100% local wind energy: Technical, economic and environmental perspectives," Energy, Elsevier, vol. 270(C).
    14. Vincenti, Ferdinando & Valenti, Gianluca, 2025. "Assessing well-to-wheel cost of avoided carbon dioxide of zero tailpipe-emission vehicles: A case study for a fleet in Valle Camonica," Energy, Elsevier, vol. 322(C).
    15. Ghaithan, Ahmed M., 2024. "Multi-objective model for designing hydrogen refueling station powered using on-grid photovoltaic-wind system," Energy, Elsevier, vol. 312(C).
    16. Hyunsoo Kang, 2022. "Impacts of Income Inequality and Economic Growth on CO 2 Emissions: Comparing the Gini Coefficient and the Top Income Share in OECD Countries," Energies, MDPI, vol. 15(19), pages 1-15, September.
    17. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    18. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    19. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Jiwon Yu & Young Jae Han & Hyewon Yang & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain," Sustainability, MDPI, vol. 14(21), pages 1-20, October.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7518-:d:940199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.