IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7459-d938698.html
   My bibliography  Save this article

A Comprehensive Study on Air-Cathode Limitations and Its Mitigation Strategies in Microbial Desalination Cell—A Review

Author

Listed:
  • Noor Juma Al Balushi

    (Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, Muscat 123, Oman)

  • Jagdeep Kumar Nayak

    (Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, Muscat 123, Oman)

  • Sadik Rahman

    (Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, Muscat 123, Oman)

  • Ahmad Sana

    (Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, Muscat 123, Oman)

  • Abdullah Al-Mamun

    (Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, Muscat 123, Oman)

Abstract

Microbial desalination cells (MDCs) are promising bioelectrochemical systems for desalination using the bacteria-generated electricity from the biodegradation of organic wastes contained in the wastewater. Instead of being a sustainable and eco-friendly desalination technology, the large-scale application of MDC was limited due to the high installation cost of the metal-catalyst-coated cathode electrode and the poor performance of the cathode in long-term operation due to catalyst fouling. Such cathodic limitations have hindered its large-scale application. The cathodic limitation has arisen mainly because of three losses, such as (1) Ohmic loss, (2) mass transfer loss, and (3) activation loss. The catalyst-assisted cathodic reduction reaction is an electrochemical surface phenomenon; thereby, the cathode’s surface charge transfer and thermodynamic efficiency are crucial for reaction kinetics. This review article aims to provide an overview of the MDC process, performance indicators, and summarizes the limiting factors that could hinder the process performance. Then, the article represented a comprehensive summary of the air-cathodic limitations and the mechanisms applied to improve the air-cathodic limitations in MDC to enhance the cathodic reaction kinetics through cathode surface modification through catalysts. The study is significantly different from other review studies by the precise identification and illustration of the cathodic losses and their mitigation strategies through surface modification. The details about the role of photocatalysts in the minimization of the cathode losses and improvement of the performance of MDC were well presented.

Suggested Citation

  • Noor Juma Al Balushi & Jagdeep Kumar Nayak & Sadik Rahman & Ahmad Sana & Abdullah Al-Mamun, 2022. "A Comprehensive Study on Air-Cathode Limitations and Its Mitigation Strategies in Microbial Desalination Cell—A Review," Energies, MDPI, vol. 15(20), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7459-:d:938698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7459/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmoud Shatat & Saffa B. Riffat, 2014. "Water desalination technologies utilizing conventional and renewable energy sources," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(1), pages 1-19.
    2. Li Guang & Desmond Ato Koomson & Huang Jingyu & David Ewusi-Mensah & Nicholas Miwornunyuie, 2020. "Performance of Exoelectrogenic Bacteria Used in Microbial Desalination Cell Technology," IJERPH, MDPI, vol. 17(3), pages 1-12, February.
    3. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    4. McGovern, Ronan K. & Weiner, Adam M. & Sun, Lige & Chambers, Chester G. & Zubair, Syed M. & Lienhard V, John H., 2014. "On the cost of electrodialysis for the desalination of high salinity feeds," Applied Energy, Elsevier, vol. 136(C), pages 649-661.
    5. Jafary, Tahereh & Al-Mamun, Abdullah & Alhimali, Halimah & Baawain, Mahad Said & Rahman, Mohammad Shafiur & Rahman, Sadik & Dhar, Bipro Ranjan & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2020. "Enhanced power generation and desalination rate in a novel quadruple microbial desalination cell with a single desalination chamber," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    2. Wang, Xipan & Song, Junnian & Xing, Jiahao & Duan, Haiyan & Wang, Xian'en, 2022. "System nexus consolidates coupling of regional water and energy efficiencies," Energy, Elsevier, vol. 256(C).
    3. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Molinos-Senante, María & Sala-Garrido, Ramón, 2018. "Evaluation of energy performance of drinking water treatment plants: Use of energy intensity and energy efficiency metrics," Applied Energy, Elsevier, vol. 229(C), pages 1095-1102.
    5. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    6. Lam, Chor-Man & Leng, Ling & Chen, Pi-Cheng & Lee, Po-Heng & Hsu, Shu-Chien, 2017. "Eco-efficiency analysis of non-potable water systems in domestic buildings," Applied Energy, Elsevier, vol. 202(C), pages 293-307.
    7. Hugo Guillermo Jimenez Pacheco & Abdel Alejandro Portocarrero Banda & Eric Ivan Vilca Cayllahua & Lilia Mary Miranda Ramos & Victor Ludgardo Alvarez Tohalino & Herbert Jesús Del Carpio Beltran & Pavel, 2023. "New Electrogenic Microorganism Citrobacter sp. Isolated from Microbial Fuel Cell and Bacterial Characteristics Determination," Energies, MDPI, vol. 16(7), pages 1-13, March.
    8. Sooyeon Yi & G. Mathias Kondolf & Samuel Sandoval-Solis & Larry Dale, 2022. "Application of Machine Learning-based Energy Use Forecasting for Inter-basin Water Transfer Project," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5675-5694, November.
    9. Abdollah Karami & Reem Shomal & Rana Sabouni & Mohammad H. Al-Sayah & Ahmed Aidan, 2022. "Parametric Study of Methyl Orange Removal Using Metal–Organic Frameworks Based on Factorial Experimental Design Analysis," Energies, MDPI, vol. 15(13), pages 1-23, June.
    10. Duan, Cuncun & Chen, Bin, 2020. "Driving factors of water-energy nexus in China," Applied Energy, Elsevier, vol. 257(C).
    11. Azize Ayol & Luciana Peixoto & Tugba Keskin & Haris Nalakath Abubackar, 2021. "Reactor Designs and Configurations for Biological and Bioelectrochemical C1 Gas Conversion: A Review," IJERPH, MDPI, vol. 18(21), pages 1-36, November.
    12. Leandro Alves Evangelista & Gustavo Meirelles & Bruno Brentan, 2023. "Computational Model of Water Distribution Network Life Cycle Deterioration," Sustainability, MDPI, vol. 15(19), pages 1-14, October.
    13. Molinos-Senante, María & Guzmán, Catalina, 2018. "Reducing CO2 emissions from drinking water treatment plants: A shadow price approach," Applied Energy, Elsevier, vol. 210(C), pages 623-631.
    14. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat," Energy, Elsevier, vol. 165(PA), pages 916-930.
    15. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Liu, Gengyuan & Hu, Junmei & Chen, Caocao & Xu, Linyu & Wang, Ning & Meng, Fanxin & Giannetti, Biagio F. & Agostinho, Feni & Almeida, Cecília M.V. B. & Casazza, Marco, 2021. "LEAP-WEAP analysis of urban energy-water dynamic nexus in Beijing (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    17. Juan C. González Palencia & Yuta Itoi & Mikiya Araki, 2022. "Design of a Hydrogen Production System Considering Energy Consumption, Water Consumption, CO 2 Emissions and Cost," Energies, MDPI, vol. 15(21), pages 1-25, October.
    18. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    19. Rosales-Asensio, Enrique & Borge-Diez, David & Pérez-Hoyos, Ana & Colmenar-Santos, Antonio, 2019. "Reduction of water cost for an existing wind-energy-based desalination scheme: A preliminary configuration," Energy, Elsevier, vol. 167(C), pages 548-560.
    20. Chen, Chen & Zhang, Xiaodong & Zhang, Huayong & Cai, Yanpeng & Wang, Shuguang, 2022. "Managing water-energy-carbon nexus in integrated regional water network planning through graph theory-based bi-level programming," Applied Energy, Elsevier, vol. 328(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7459-:d:938698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.