IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6795-d917287.html
   My bibliography  Save this article

The Multi-Facets of Increasing the Renewable Energy Integration in Power Systems

Author

Listed:
  • Giulia Grazioli

    (Centre for Applied Mathematics, Mines Paris-PSL, 06904 Sophia Antipolis, France)

  • Sophie Chlela

    (Centre for Applied Mathematics, Mines Paris-PSL, 06904 Sophia Antipolis, France)

  • Sandrine Selosse

    (Centre for Applied Mathematics, Mines Paris-PSL, 06904 Sophia Antipolis, France)

  • Nadia Maïzi

    (Centre for Applied Mathematics, Mines Paris-PSL, 06904 Sophia Antipolis, France)

Abstract

The increase in the share of renewable energy in the power generation mix plays a pivotal role in the decarbonisation of power systems, thus facilitating the achievement of international and national targets for reducing greenhouse gas emissions and addressing climate change. Due to the intermittent nature of variable renewable energy, the integration of these sources in power systems requires investments in additional solutions and setting strategies to ensure grid stability and reliability. For that purpose, a prospective modelling was applied to the relatively isolated island named Procida, located in the gulf of Naples in Italy, through the bottom-up optimization model TIMES-Procida for a long-term energy plan where technical solutions, i.e., deployment of photovoltaics on rooftops and storage, and policy scenarios, i.e., energy efficiency, were used to analyse the evolution of the energy system. The introduction of renewable energy could be much more relevant when dealing with islands; they appear as decisive territories for experimentation and analysis of the transformation of all power systems. At year 2050, our results address decarbonisation and energy autonomy. They show that only with high shares of renewable energy will the territory see a noticeable decarbonisation of its economic sectors (up to 24%) and a decreasing dependency on imports (−16.6% compared to low renewable integration). By comparing the results of scenarios including or lacking storage solutions, we showcased how this reflected on the investments in PV and on grid congestion relief.

Suggested Citation

  • Giulia Grazioli & Sophie Chlela & Sandrine Selosse & Nadia Maïzi, 2022. "The Multi-Facets of Increasing the Renewable Energy Integration in Power Systems," Energies, MDPI, vol. 15(18), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6795-:d:917287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6795/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Drouineau, Mathilde & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2015. "Increasing shares of intermittent sources in Reunion Island: Impacts on the future reliability of power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 120-128.
    2. Hannah Mareike Marczinkowski & Poul Alberg Østergaard & Søren Roth Djørup, 2019. "Transitioning Island Energy Systems—Local Conditions, Development Phases, and Renewable Energy Integration," Energies, MDPI, vol. 12(18), pages 1-20, September.
    3. Selosse, Sandrine & Garabedian, Sabine & Ricci, Olivia & Maïzi, Nadia, 2018. "The renewable energy revolution of reunion island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 99-105.
    4. Selosse, Sandrine & Ricci, Olivia & Garabedian, Sabine & Maïzi, Nadia, 2018. "Exploring sustainable energy future in Reunion Island," Utilities Policy, Elsevier, vol. 55(C), pages 158-166.
    5. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    6. Rae, Callum & Bradley, Fiona, 2012. "Energy autonomy in sustainable communities—A review of key issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6497-6506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    2. Sabine, Garabedian & Avotra, Narindranjanahary & Olivia, Ricci & Sandrine, Selosse, 2020. "A macroeconomic evaluation of a carbon tax in overseas territories: A CGE model for Reunion Island," Energy Policy, Elsevier, vol. 147(C).
    3. François, Agnès & Roche, Robin & Grondin, Dominique & Benne, Michel, 2023. "Assessment of medium and long term scenarios for the electrical autonomy in island territories: The Reunion Island case study," Renewable Energy, Elsevier, vol. 216(C).
    4. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Juntunen, Jouni K. & Martiskainen, Mari, 2021. "Improving understanding of energy autonomy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Anna Flessa & Dimitris Fragkiadakis & Eleftheria Zisarou & Panagiotis Fragkos, 2023. "Developing an Integrated Energy–Economy Model Framework for Islands," Energies, MDPI, vol. 16(3), pages 1-32, January.
    9. Dimitris Al. Katsaprakakis & Apostolos Michopoulos & Vasiliki Skoulou & Eirini Dakanali & Aggeliki Maragkaki & Stavroula Pappa & Ioannis Antonakakis & Dimitris Christakis & Constantinos Condaxakis, 2022. "A Multidisciplinary Approach for an Effective and Rational Energy Transition in Crete Island, Greece," Energies, MDPI, vol. 15(9), pages 1-49, April.
    10. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    11. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    13. Chopin, Pierre & Guindé, Loïc & Causeret, François & Bergkvist, Göran & Blazy, Jean-Marc, 2019. "Integrating stakeholder preferences into assessment of scenarios for electricity production from locally produced biomass on a small island," Renewable Energy, Elsevier, vol. 131(C), pages 128-136.
    14. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    15. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    16. Russeil, Valentin & Lo Seen, Danny & Broust, François & Bonin, Muriel & Praene, Jean-Philippe, 2023. "Food and electricity self-sufficiency trade-offs in Reunion Island: Modelling land-use change scenarios with stakeholders," Land Use Policy, Elsevier, vol. 132(C).
    17. McKenna, Russell & Merkel, Erik & Fichtner, Wolf, 2017. "Energy autonomy in residential buildings: A techno-economic model-based analysis of the scale effects," Applied Energy, Elsevier, vol. 189(C), pages 800-815.
    18. Lim, Xin-Le & Lam, Wei-Haur, 2014. "Public Acceptance of Marine Renewable Energy in Malaysia," Energy Policy, Elsevier, vol. 65(C), pages 16-26.
    19. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    20. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6795-:d:917287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.