Gasification Characteristics of High Moisture Content Lignite under CO 2 and Auto-Generated Steam Atmosphere in a Moving Bed Tubular Reactor
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kumari, Geeta & Vairakannu, Prabu, 2018. "CO2-air based two stage gasification of low ash and high ash Indian coals in the context of underground coal gasification," Energy, Elsevier, vol. 143(C), pages 822-832.
- Özdenkçi, Karhan & Prestipino, Mauro & Björklund-Sänkiaho, Margareta & Galvagno, Antonio & De Blasio, Cataldo, 2020. "Alternative energy valorization routes of black liquor by stepwise supercritical water gasification: Effect of process parameters on hydrogen yield and energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Liu, Rongtang & Liu, Ming & Fan, Peipei & Zhao, Yongliang & Yan, Junjie, 2018. "Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis," Energy, Elsevier, vol. 165(PB), pages 140-152.
- He, Xiao & Zeng, Kuo & Xie, Yingpu & Flamant, Gilles & Yang, Haiping & Yang, Xinyi & Nzihou, Ange & Zheng, Anqing & Ding, Zhi & Chen, Hanping, 2019. "The effects of temperature and molten salt on solar pyrolysis of lignite," Energy, Elsevier, vol. 181(C), pages 407-416.
- Liu, Jia & Hu, Nan & Fan, Li-Wu, 2022. "Optimal design and thermodynamic analysis on the hydrogen oxidation reactor in a combined hydrogen production and power generation system based on coal gasification in supercritical water," Energy, Elsevier, vol. 238(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
- Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
- Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
- Chen, Xin & Zeng, Kuo & Sheng, Chengmin & Zhong, Dian & Li, Jun & Li, Beiyang & Luo, Yu & Zuo, Hongyang & Yang, Haiping & Chen, Hanping, 2025. "Solar pyrolysis of low-rank coal: The effect of heat flux density and particle size," Energy, Elsevier, vol. 322(C).
- Bei, Lijing & Ge, Zhiwei & Ren, Changyifan & Su, Di & Shang, Fei & Wang, Yu & Guo, Liejin, 2023. "Numerical study on supercritical water partial oxidation of ethanol with auto-thermal operation," Energy, Elsevier, vol. 264(C).
- Wei, Yi & Lu, Licong & Zhang, Xudong & Ji, Jianbing, 2022. "Hydrogen produced at low temperatures by electrochemically assisted pyrolysis of cellulose in molten carbonate," Energy, Elsevier, vol. 254(PC).
- Shen, Ye & Li, Xian & Yao, Zhiyi & Cui, Xiaoqiang & Wang, Chi-Hwa, 2019. "CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier," Energy, Elsevier, vol. 170(C), pages 497-506.
- Kumar, Vineet & Malyan, Sandeep Kumar & Apollon, Wilgince & Verma, Pradeep, 2024. "Valorization of pulp and paper industry waste streams into bioenergy and value-added products: An integrated biorefinery approach," Renewable Energy, Elsevier, vol. 228(C).
- Xue, Xiaodong & Li, Guangyang & Wang, Yulin & Han, Wei & Liu, Changchun & Jiao, Fan, 2025. "Proposal and evaluation of a near-zero carbon emissions hydrogen production system coupled with photovoltaic, photothermal and coal gasification," Applied Energy, Elsevier, vol. 377(PA).
- Dong, Lu & Liu, Yuhao & Wen, Huaizhou & Zou, Chan & Dai, Qiqi & Zhang, Haojie & Xu, Lejin & Hu, Hongyun & Yao, Hong, 2023. "The deoxygenation mechanism of biomass thermal conversion with molten salts: Experimental and theoretical analysis," Renewable Energy, Elsevier, vol. 219(P1).
- Zeng, Kuo & Li, Rui & Minh, Doan Pham & Weiss-Hortala, Elsa & Nzihou, Ange & Zhong, Dian & Flamant, Gilles, 2020. "Characterization of char generated from solar pyrolysis of heavy metal contaminated biomass," Energy, Elsevier, vol. 206(C).
- Zhang, Xiaoge & Hu, Citao & Wang, Hao & Lu, Youjun, 2025. "Dynamic simulation and predictive control for supercritical water oxidation reactor using reactor network model," Energy, Elsevier, vol. 324(C).
- Zeng, Kuo & Li, Jun & Xie, Yingpu & Yang, Haiping & Yang, Xinyi & Zhong, Dian & Zhen, Wanxin & Flamant, Gilles & Chen, Hanping, 2020. "Molten salt pyrolysis of biomass: The mechanism of volatile reforming and pyrolysis," Energy, Elsevier, vol. 213(C).
- Feng, Lele & Zhou, Sibo & Xu, Xiangcen & Qin, Botao, 2022. "Importance evaluation for influencing factors of underground coal gasification through ex-situ experiment and analytic hierarchy process," Energy, Elsevier, vol. 261(PA).
- Huang, Yingfei & Zhang, Fengming & Liang, Zhaojian & Li, Yufeng & Wu, Tong, 2023. "Effect of hydrothermal flame generation methods on energy consumption and economic performance of supercritical water oxidation systems," Energy, Elsevier, vol. 266(C).
- Li, Hong & Zhou, Hao & Liu, Kailong & Gao, Xin & Li, Xingang, 2021. "Retrofit application of traditional petroleum chemical technologies to coal chemical industry for sustainable energy-efficiency production," Energy, Elsevier, vol. 218(C).
- Ali, Mujahid & Mahmood, Faisal & Magoua Mbeugang, Christian Fabrice & Tang, Jiazhen & Xie, Xing & Li, Bin, 2025. "Molten chloride salt pyrolysis of biomass: Effects of temperature and mass ratio of molten salt to biomass," Energy, Elsevier, vol. 316(C).
- Chen, Yi-Feng & Su, Sheng & Zhang, Liang-Ping & Jiang, Long & Qing, Meng-Xia & Chi, Huan-Ying & Ling, Peng & Han, Heng-Da & Xu, Kai & Wang, Yi & Hu, Song & Xiang, Jun, 2021. "Insights into evolution mechanism of PAHs in coal thermal conversion: A combined experimental and DFT study," Energy, Elsevier, vol. 222(C).
- Liu, Rongtang & Liu, Ming & Zhao, Yongliang & Ma, Yuegeng & Yan, Junjie, 2021. "Thermodynamic study of a novel lignite poly-generation system driven by solar energy," Energy, Elsevier, vol. 214(C).
- Li, Ruochen & Meng, Tianxin & Song, Gongxiang & Huang, Dexin & Hu, Song & Jiang, Long & Xu, Jun & Wang, Yi & Su, Sheng & Xiang, Jun, 2024. "A GIS-based assessment of the carbon emission reduction potential of the solar-enhanced char-cycling biomass pyrolysis process in China," Renewable Energy, Elsevier, vol. 237(PA).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6751-:d:915798. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.