IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6580-d910131.html
   My bibliography  Save this article

A Review on Emerging Communication and Computational Technologies for Increased Use of Plug-In Electric Vehicles

Author

Listed:
  • Vinay Simha Reddy Tappeta

    (School of Electronics Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India)

  • Bhargav Appasani

    (School of Electronics Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India)

  • Suprava Patnaik

    (School of Electronics Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India)

  • Taha Selim Ustun

    (Fukushima Renewable Energy Institute, AIST (FREA), Koriyama 963-0298, Japan)

Abstract

The electric vehicle (EV) industry is quickly growing in the present scenario, and will have more demand in the future. A sharp increase in the sales of EVs by 160% in 2021 represents 26% of new sales in the worldwide automotive market. EVs are deemed to be the transportation of the future, as they offer significant cost savings and reduce carbon emissions. However, their interactions with the power grid, charging stations, and households require new communication and control techniques. EVs show unprecedented behavior during vehicle battery charging, and sending the charge from the vehicle’s battery back to the grid via a charging station during peak hours has an impact on the grid operation. Balancing the load during peak hours, i.e., managing the energy between the grid and vehicle, requires efficient communication protocols, standards, and computational technologies that are essential for improving the performance, efficiency, and security of vehicle-to-vehicle, vehicle-to-grid (V2G), and grid-to-vehicle (G2V) communication. Machine learning and deep learning technologies are being used to manage EV-charging station interactions, estimate the charging behavior, and to use EVs in the load balancing and stability control of smart grids. Internet of Things (IoT) technology can be used for managing EV charging stations and monitoring EV batteries. Recently, much work has been presented in the EV communication and control domain. In order to categorize these efforts in a meaningful manner and highlight their contributions to advancing EV migration, a thorough survey is required. This paper presents existing literature on emerging protocols, standards, communication technologies, and computational technologies for EVs. Frameworks, standards, architectures, and protocols proposed by various authors are discussed in the paper to serve the need of various researchers for implementing the applications in the EV domain. Security plays a vital role in EV authentication and billing activities. Hackers may exploit the hardware, such as sensors and other electronic systems and software of the EV, for various malicious activities. Various authors proposed standards and protocols for mitigating cyber-attacks on security aspects in the complex EV ecosystem.

Suggested Citation

  • Vinay Simha Reddy Tappeta & Bhargav Appasani & Suprava Patnaik & Taha Selim Ustun, 2022. "A Review on Emerging Communication and Computational Technologies for Increased Use of Plug-In Electric Vehicles," Energies, MDPI, vol. 15(18), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6580-:d:910131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prince Waqas Khan & Yung-Cheol Byun, 2021. "Blockchain-Based Peer-to-Peer Energy Trading and Charging Payment System for Electric Vehicles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    2. Marina Dorokhova & Jérémie Vianin & Jean-Marie Alder & Christophe Ballif & Nicolas Wyrsch & David Wannier, 2021. "A Blockchain-Supported Framework for Charging Management of Electric Vehicles," Energies, MDPI, vol. 14(21), pages 1-32, November.
    3. Bhargav Appasani & Sunil Kumar Mishra & Amitkumar V. Jha & Santosh Kumar Mishra & Florentina Magda Enescu & Ioan Sorin Sorlei & Fernando Georgel Bîrleanu & Noureddine Takorabet & Phatiphat Thounthong , 2022. "Blockchain-Enabled Smart Grid Applications: Architecture, Challenges, and Solutions," Sustainability, MDPI, vol. 14(14), pages 1-33, July.
    4. Furquan Nadeem & Mohd Asim Aftab & S.M. Suhail Hussain & Ikbal Ali & Prashant Kumar Tiwari & Arup Kumar Goswami & Taha Selim Ustun, 2019. "Virtual Power Plant Management in Smart Grids with XMPP Based IEC 61850 Communication," Energies, MDPI, vol. 12(12), pages 1-20, June.
    5. Connor Scott & Mominul Ahsan & Alhussein Albarbar, 2021. "Machine Learning Based Vehicle to Grid Strategy for Improving the Energy Performance of Public Buildings," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    6. Shihang Wang & Zongmin Li & Yuhong Wang & Qi Zhang, 2019. "Machine Learning Methods to Predict Social Media Disaster Rumor Refuters," IJERPH, MDPI, vol. 16(8), pages 1-16, April.
    7. Yiqi Lu & Yongpan Li & Da Xie & Enwei Wei & Xianlu Bao & Huafeng Chen & Xiancheng Zhong, 2018. "The Application of Improved Random Forest Algorithm on the Prediction of Electric Vehicle Charging Load," Energies, MDPI, vol. 11(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Broatch & Pablo Olmeda & Benjamín Plá & Amin Dreif, 2022. "Novel Energy Management Control Strategy for Improving Efficiency in Hybrid Powertrains," Energies, MDPI, vol. 16(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    2. Qin Chen & Komla Agbenyo Folly, 2022. "Application of Artificial Intelligence for EV Charging and Discharging Scheduling and Dynamic Pricing: A Review," Energies, MDPI, vol. 16(1), pages 1-26, December.
    3. Daniel Sousa-Dias & Daniel Amyot & Ashkan Rahimi-Kian & John Mylopoulos, 2023. "A Review of Cybersecurity Concerns for Transactive Energy Markets," Energies, MDPI, vol. 16(13), pages 1-32, June.
    4. Jayanta Bhusan Basu & Subhojit Dawn & Pradip Kumar Saha & Mitul Ranjan Chakraborty & Taha Selim Ustun, 2022. "Economic Enhancement of Wind–Thermal–Hydro System Considering Imbalance Cost in Deregulated Power Market," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    5. Bo Wei & Wenfei Liu & Chong Shao & Yong Yang & Yanbing Su & Zhaoyuan Wu, 2023. "Energy Storage Sharing for Multiple Services Provision: A Computable Combinatorial Auction Design," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    6. Zhou, Kaile & Hu, Dingding & Li, Fangyi, 2022. "Impact of COVID-19 on private driving behavior: Evidence from electric vehicle charging data," Transport Policy, Elsevier, vol. 125(C), pages 164-178.
    7. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    8. Florentina Magda Enescu & Fernando Georgel Birleanu & Maria Simona Raboaca & Nicu Bizon & Phatiphat Thounthong, 2022. "A Review of the Public Transport Services Based on the Blockchain Technology," Sustainability, MDPI, vol. 14(20), pages 1-34, October.
    9. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
    10. Changzhi Li & Dandan Liu & Mao Wang & Hanlin Wang & Shuai Xu, 2023. "Detection of Outliers in Time Series Power Data Based on Prediction Errors," Energies, MDPI, vol. 16(2), pages 1-19, January.
    11. Taha Selim Ustun & S. M. Suhail Hussain & Mazheruddin H. Syed & Paulius Dambrauskas, 2021. "IEC-61850-Based Communication for Integrated EV Management in Power Systems with Renewable Penetration," Energies, MDPI, vol. 14(9), pages 1-15, April.
    12. Wenbing Zhao & Quan Qi & Jiong Zhou & Xiong Luo, 2023. "Blockchain-Based Applications for Smart Grids: An Umbrella Review," Energies, MDPI, vol. 16(17), pages 1-35, August.
    13. Bhargav Appasani & Sunil Kumar Mishra & Amitkumar V. Jha & Santosh Kumar Mishra & Florentina Magda Enescu & Ioan Sorin Sorlei & Fernando Georgel Bîrleanu & Noureddine Takorabet & Phatiphat Thounthong , 2022. "Blockchain-Enabled Smart Grid Applications: Architecture, Challenges, and Solutions," Sustainability, MDPI, vol. 14(14), pages 1-33, July.
    14. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    15. Partha Pratim Dey & Dulal Chandra Das & Abdul Latif & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Active Power Management of Virtual Power Plant under Penetration of Central Receiver Solar Thermal-Wind Using Butterfly Optimization Technique," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    16. Tehseen Mazhar & Hafiz Muhammad Irfan & Sunawar Khan & Inayatul Haq & Inam Ullah & Muhammad Iqbal & Habib Hamam, 2023. "Analysis of Cyber Security Attacks and Its Solutions for the Smart grid Using Machine Learning and Blockchain Methods," Future Internet, MDPI, vol. 15(2), pages 1-37, February.
    17. Zeinab Teimoori & Abdulsalam Yassine, 2022. "A Review on Intelligent Energy Management Systems for Future Electric Vehicle Transportation," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    18. Laurence L. Delina & Rainbow Yi Hung Lam & Wing Shun Tang & Ka Ying Wong, 2023. "Mapping the actor landscape of a future fintech-funded renewable energy ecosystem in Hong Kong," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(3), pages 419-427, September.
    19. Fahad R. Albogamy & Ghulam Hafeez & Imran Khan & Sheraz Khan & Hend I. Alkhammash & Faheem Ali & Gul Rukh, 2021. "Efficient Energy Optimization Day-Ahead Energy Forecasting in Smart Grid Considering Demand Response and Microgrids," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
    20. Sagar Hossain & Md. Rokonuzzaman & Kazi Sajedur Rahman & A. K. M. Ahasan Habib & Wen-Shan Tan & Md Mahmud & Shahariar Chowdhury & Sittiporn Channumsin, 2023. "Grid-Vehicle-Grid (G2V2G) Efficient Power Transmission: An Overview of Concept, Operations, Benefits, Concerns, and Future Challenges," Sustainability, MDPI, vol. 15(7), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6580-:d:910131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.