IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6504-d907928.html
   My bibliography  Save this article

The Thermal Comfort Problem in Public Space during the Climate Change Era Based on the Case Study of Selected Area in Lublin City in Poland

Author

Listed:
  • Natalia Przesmycka

    (Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland)

  • Bartłomiej Kwiatkowski

    (Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland)

  • Małgorzata Kozak

    (Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland)

Abstract

Noticeable climate change in recent years is reducing the comfort of public spaces in the urban environment, and is becoming an element of urban policies. The adaptation to climate change requires the development of new design guidelines for the development of public spaces. The appropriate definition of development density, choice of building materials, technologies, planting species, and the used directions is a challenge that depends on local conditions. A representative public space located in the area of a multi-family housing estate built in the second half of the 20th century in Lublin (Poland) was selected for the study. The space has undergone redevelopment twice in the last 10 years. The aim of the study was to determine to what extent the executed and designed changes actually improve the thermal comfort of users. Quantitative and qualitative indicators of the successive phases of the investment were analyzed in the context of projected climate change. The simulation was developed using the ENVI-met version 5.0 software. As a result of the changes made, there has been an improvement in usability and comfort. Five simulations were carried out for the warmest day of the year for one of the public spaces in the city of Lublin. The sensation of PET thermal comfort was investigated for people aged 35 and 75, as a particularly sensitive group. The obtained result proved that the elderly feel higher temperature rates than younger people. In one of the simulations, new plantings were proposed to improve the local microclimate. The material temperatures of paved surfaces were also investigated. The article shows how the local microclimate and people’s desire to stay in a given space can be improved with new tree planting.

Suggested Citation

  • Natalia Przesmycka & Bartłomiej Kwiatkowski & Małgorzata Kozak, 2022. "The Thermal Comfort Problem in Public Space during the Climate Change Era Based on the Case Study of Selected Area in Lublin City in Poland," Energies, MDPI, vol. 15(18), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6504-:d:907928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edyta Małecka-Ziembińska & Izabela Janicka, 2022. "Nature-Based Solutions in Poland against Climate Change," Energies, MDPI, vol. 15(1), pages 1-20, January.
    2. Shuaishuai Han & Changhong Miao, 2022. "Does a Polycentric Spatial Structure Help to Reduce Industry Emissions?," IJERPH, MDPI, vol. 19(13), pages 1-14, July.
    3. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    4. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    5. Deng, Ji-Yu & Wong, Nyuk Hien & Zheng, Xin, 2021. "Effects of street geometries on building cooling demand in Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    6. Alessandra Battisti, 2020. "Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces," Energies, MDPI, vol. 13(21), pages 1-20, November.
    7. Mohamed Elhadi Matallah & Waqas Ahmed Mahar & Mushk Bughio & Djamel Alkama & Atef Ahriz & Soumia Bouzaher, 2021. "Prediction of Climate Change Effect on Outdoor Thermal Comfort in Arid Region," Energies, MDPI, vol. 14(16), pages 1-26, August.
    8. You Peng & Zhikai Peng & Tao Feng & Chixing Zhong & Wei Wang, 2021. "Assessing Comfort in Urban Public Spaces: A Structural Equation Model Involving Environmental Attitude and Perception," IJERPH, MDPI, vol. 18(3), pages 1-17, February.
    9. Peng, Lilliana L.H. & Jiang, Zhidian & Yang, Xiaoshan & Wang, Qingqing & He, Yunfei & Chen, Sophia Shuang, 2020. "Energy savings of block-scale facade greening for different urban forms," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Karimi & Pir Mohammad & Antonio García-Martínez & David Moreno-Rangel & Darya Gachkar & Sadaf Gachkar, 2023. "New developments and future challenges in reducing and controlling heat island effect in urban areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10485-10531, October.
    2. Susan Williams & Peng Bi & Jonathan Newbury & Guy Robinson & Dino Pisaniello & Arthur Saniotis & Alana Hansen, 2013. "Extreme Heat and Health: Perspectives from Health Service Providers in Rural and Remote Communities in South Australia," IJERPH, MDPI, vol. 10(11), pages 1-19, October.
    3. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    4. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    5. Sara Wilkinson & Renato Castiglia Feitosa, 2015. "Retrofitting Housing with Lightweight Green Roof Technology in Sydney, Australia, and Rio de Janeiro, Brazil," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
    6. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    7. Tao Chen & Anchang Sun & Ruiqing Niu, 2019. "Effect of Land Cover Fractions on Changes in Surface Urban Heat Islands Using Landsat Time-Series Images," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    8. Vaneckova, Pavla & Beggs, Paul J. & Jacobson, Carol R., 2010. "Spatial analysis of heat-related mortality among the elderly between 1993 and 2004 in Sydney, Australia," Social Science & Medicine, Elsevier, vol. 70(2), pages 293-304, January.
    9. Maria Papathoma-Koehle & Catrin Promper & Roxana Bojariu & Roxana Cica & András Sik & Kinga Perge & Peter László & Erika Balázs Czikora & Alexandru Dumitrescu & Cosmin Turcus & Marius-Victor Birsan & , 2016. "A common methodology for risk assessment and mapping for south-east Europe: an application for heat wave risk in Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 89-109, May.
    10. Qunshan Zhao & Elizabeth A. Wentz, 2016. "A MODIS/ASTER Airborne Simulator (MASTER) Imagery for Urban Heat Island Research," Data, MDPI, vol. 1(1), pages 1-9, June.
    11. Yuan-Bin Cai & Ke Li & Yan-Hong Chen & Lei Wu & Wen-Bin Pan, 2021. "The Changes of Heat Contribution Index in Urban Thermal Environment: A Case Study in Fuzhou," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    12. Weihua Dong & Zhao Liu & Hua Liao & Qiuhong Tang & Xian’en Li, 2015. "New climate and socio-economic scenarios for assessing global human health challenges due to heat risk," Climatic Change, Springer, vol. 130(4), pages 505-518, June.
    13. Mabon, Leslie & Shih, Wan-Yu, 2018. "What might ‘just green enough’ urban development mean in the context of climate change adaptation? The case of urban greenspace planning in Taipei Metropolis, Taiwan," World Development, Elsevier, vol. 107(C), pages 224-238.
    14. Kristian Fabbri & Ernesto Antonini & Lia Marchi, 2023. "Sun-Shading Sails in Courtyards: An Italian Case Study with RayMan," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    15. Derick A. Akompab & Peng Bi & Susan Williams & Janet Grant & Iain A. Walker & Martha Augoustinos, 2013. "Heat Waves and Climate Change: Applying the Health Belief Model to Identify Predictors of Risk Perception and Adaptive Behaviours in Adelaide, Australia," IJERPH, MDPI, vol. 10(6), pages 1-21, May.
    16. Young-Jae Kim & Ayoung Woo, 2015. "Estimating Natural Environmental Characteristics of Subsidized Households: A Case Study of Austin, Texas," Sustainability, MDPI, vol. 7(10), pages 1-21, September.
    17. Thandi Kapwata & Michael T. Gebreslasie & Angela Mathee & Caradee Yael Wright, 2018. "Current and Potential Future Seasonal Trends of Indoor Dwelling Temperature and Likely Health Risks in Rural Southern Africa," IJERPH, MDPI, vol. 15(5), pages 1-16, May.
    18. Alisa L. Hass & Kelsey N. Ellis & Lisa Reyes Mason & Jon M. Hathaway & David A. Howe, 2016. "Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States," IJERPH, MDPI, vol. 13(1), pages 1-19, January.
    19. David M. Lapola & Diego R. Braga & Gabriela M. Di Giulio & Roger R. Torres & Maria P. Vasconcellos, 2019. "Heat stress vulnerability and risk at the (super) local scale in six Brazilian capitals," Climatic Change, Springer, vol. 154(3), pages 477-492, June.
    20. Cutts, Bethany B. & Darby, Kate J. & Boone, Christopher G. & Brewis, Alexandra, 2009. "City structure, obesity, and environmental justice: An integrated analysis of physical and social barriers to walkable streets and park access," Social Science & Medicine, Elsevier, vol. 69(9), pages 1314-1322, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6504-:d:907928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.