IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5819-d441164.html
   My bibliography  Save this article

Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces

Author

Listed:
  • Alessandra Battisti

    (Department of Planning, Design and Technology of Architecture, Sapienza University of Rome, Via Flaminia 72, 00196 Rome, Italy)

Abstract

This paper deals with the interactions between biophysical and microclimatic factors on the one hand with, on the other, the urban morphology of intermediate urban open spaces, the relationship between environmental and bioclimatic thermal comfort, and the implementation of innovative materials and the use of greenery, aimed at the users’ well-being. In particular, the thermal comfort of the open spaces of the consolidated fabrics of the city of Rome is studied, by carrying out simulations of cooling strategies relating to two scenarios applied to Piazza Bainsizza. The first scenario involves the use of cool materials for roofs, cladding surfaces, and pavement, while the second scenario, in addition to the cool materials employed in the first scenario, also includes the use of greenery and permeable green surfaces. The research was performed using summer and winter microclimatic simulations of the CFD (ENVI-met v. 3.1) type, in order to determine the different influences of the materials with cold colors, trees, and vegetated surfaces on the thermal comfort of the urban morphology itself. Meanwhile, the comfort assessment was determined through the physiological equivalent temperature (PET) calculated with the RayMan program. The first scenario, with the use of cool materials, improves summer conditions and reduces the urban heat island effect but does not eliminate thermal discomfort due to the lack of shaded surfaces and vegetation. The second scenario, where material renovations is matched with vegetation improvements, has a slightly bad effect on winter conditions but drastically ameliorates the summer situation, both for direct users and, thanks to the strong reduction of the urban heat island effect, to urban inhabitants as a whole.

Suggested Citation

  • Alessandra Battisti, 2020. "Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces," Energies, MDPI, vol. 13(21), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5819-:d:441164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Mancini & Benedetto Nastasi, 2020. "Solar Energy Data Analytics: PV Deployment and Land Use," Energies, MDPI, vol. 13(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benedetto Nastasi & Francesco Mancini, 2021. "Procedures and Methodologies for the Control and Improvement of Energy-Environmental Quality in Construction," Energies, MDPI, vol. 14(9), pages 1-2, April.
    2. Natalia Przesmycka & Bartłomiej Kwiatkowski & Małgorzata Kozak, 2022. "The Thermal Comfort Problem in Public Space during the Climate Change Era Based on the Case Study of Selected Area in Lublin City in Poland," Energies, MDPI, vol. 15(18), pages 1-26, September.
    3. Alireza Karimi & Pir Mohammad & Antonio García-Martínez & David Moreno-Rangel & Darya Gachkar & Sadaf Gachkar, 2023. "New developments and future challenges in reducing and controlling heat island effect in urban areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10485-10531, October.
    4. Olga Palusci & Carlo Cecere, 2022. "Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas," Sustainability, MDPI, vol. 14(7), pages 1-44, March.
    5. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smrutiranjan Nayak & Sanjeeb Kumar Kar & Subhransu Sekhar Dash & Pradeep Vishnuram & Sudhakar Babu Thanikanti & Benedetto Nastasi, 2022. "Enhanced Salp Swarm Algorithm for Multimodal Optimization and Fuzzy Based Grid Frequency Controller Design," Energies, MDPI, vol. 15(9), pages 1-22, April.
    2. Siamak Hoseinzadeh & Daniele Groppi & Adriana Scarlet Sferra & Umberto Di Matteo & Davide Astiaso Garcia, 2022. "The PRISMI Plus Toolkit Application to a Grid-Connected Mediterranean Island," Energies, MDPI, vol. 15(22), pages 1-14, November.
    3. Zhang Deng & Yixing Chen & Xiao Pan & Zhiwen Peng & Jingjing Yang, 2021. "Integrating GIS-Based Point of Interest and Community Boundary Datasets for Urban Building Energy Modeling," Energies, MDPI, vol. 14(4), pages 1-17, February.
    4. Hengtian Wang & Xiaolong Yang & Xinxin Xu & Liu Fei, 2021. "Exploring Opportunities and Challenges of Solar PV Power under Carbon Peak Scenario in China: A PEST Analysis," Energies, MDPI, vol. 14(11), pages 1-28, May.
    5. Sofia Agostinelli & Fabrizio Cumo & Meysam Majidi Nezhad & Giuseppe Orsini & Giuseppe Piras, 2022. "Renewable Energy System Controlled by Open-Source Tools and Digital Twin Model: Zero Energy Port Area in Italy," Energies, MDPI, vol. 15(5), pages 1-24, March.
    6. Matteo Giacomo Prina & Giampaolo Manzolini & David Moser & Roberto Vaccaro & Wolfram Sparber, 2020. "Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios," Energies, MDPI, vol. 13(12), pages 1-22, June.
    7. Gerardo Alcalá & Luis Fernando Grisales-Noreña & Quetzalcoatl Hernandez-Escobedo & Jose Javier Muñoz-Criollo & J. D. Revuelta-Acosta, 2021. "SHP Assessment for a Run-of-River (RoR) Scheme Using a Rectangular Mesh Sweeping Approach (MSA) Based on GIS," Energies, MDPI, vol. 14(11), pages 1-21, May.
    8. Flavio Rosa, 2020. "Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints," Energies, MDPI, vol. 13(14), pages 1-28, July.
    9. Peng Cheng & Chao Wu & Huiwen Kong & Frede Blaabjerg & Yu Quan, 2020. "Connection and Control Strategy of PV Converter Integrated into Railway Traction Power Supply System," Energies, MDPI, vol. 13(22), pages 1-17, November.
    10. La Guardia, Marcello & D'Ippolito, Filippo & Cellura, Maurizio, 2022. "A GIS-based optimization model finalized to the localization of new power-to-gas plants: The case study of Sicily (Italy)," Renewable Energy, Elsevier, vol. 197(C), pages 828-835.
    11. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    12. Guillermo Quiroga-Ocaña & Julio C. Montaño-Moreno & Enrique A. Enríquez-Velásquez & Victor H. Benitez & Luis C. Félix-Herrán & Jorge de-J. Lozoya-Santos & Ricardo A. Ramírez-Mendoza, 2021. "Computing and Assessment of Discrete Angle Positions for Optimizing the Solar Energy Harvesting for Urban Sustainable Development," Energies, MDPI, vol. 14(20), pages 1-19, October.
    13. Fausto André Valenzuela-Domínguez & Luis Alfonso Santa Cruz & Enrique A. Enríquez-Velásquez & Luis C. Félix-Herrán & Victor H. Benitez & Jorge de-J. Lozoya-Santos & Ricardo A. Ramírez-Mendoza, 2021. "Solar Irradiation Evaluation through GIS Analysis Based on Grid Resolution and a Mathematical Model: A Case Study in Northeast Mexico," Energies, MDPI, vol. 14(19), pages 1-37, October.
    14. Costa, Alberto & Ng, Tsan Sheng & Su, Bin, 2023. "Long-term solar PV planning: An economic-driven robust optimization approach," Applied Energy, Elsevier, vol. 335(C).
    15. Pombo, Daniel Vázquez & Martinez-Rico, Jon & Spataru, Sergiu V. & Bindner, Henrik W. & Sørensen, Poul E., 2023. "Decarbonizing energy islands with flexibility-enabling planning: The case of Santiago, Cape Verde," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    16. Pawita Bunme & Shuhei Yamamoto & Atsushi Shiota & Yasunori Mitani, 2021. "GIS-Based Distribution System Planning for New PV Installations," Energies, MDPI, vol. 14(13), pages 1-18, June.
    17. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    18. Eleonora Riva Sanseverino & Maurizio Cellura & Le Quyen Luu & Maria Anna Cusenza & Ninh Nguyen Quang & Nam Hoai Nguyen, 2021. "Life-Cycle Land-Use Requirement for PV in Vietnam," Energies, MDPI, vol. 14(4), pages 1-11, February.
    19. Yongshi Jie & Xianhua Ji & Anzhi Yue & Jingbo Chen & Yupeng Deng & Jing Chen & Yi Zhang, 2020. "Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification," Energies, MDPI, vol. 13(24), pages 1-19, December.
    20. Altaf Hussain Rajpar & Imran Ali & Ahmad E. Eladwi & Mohamed Bashir Ali Bashir, 2021. "Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review," Energies, MDPI, vol. 14(16), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5819-:d:441164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.