IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6312-d901180.html
   My bibliography  Save this article

Hybrid Propulsion in SI Engines for New Generation Motorcycles: A Numerical-Experimental Approach to Assess Power Requirements and Emission Performance

Author

Listed:
  • Paolo Iodice

    (Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy)

  • Enrico Fornaro

    (Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy)

  • Massimo Cardone

    (Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy)

Abstract

Worldwide mopeds and motorcycles are taking on a growing main role in private mobility with a direct impact on air pollution, particularly in urban contexts of many Asian and European countries. In a preceding experimental investigation, HC and CO emissions were measured in the exhaust of a last-generation motorcycle belonging to the Euro-3 legislative category. Since exhaust emissions and fuel consumption are very sensitive to variations in vehicles instantaneous speed and acceleration, in this research new experimental results are used to recognize the kinematic parameters that cause higher engine-out emissions. In this paper, the hybrid electric propulsion is proposed for motorcycle application to reduce exhaust emissions in particular driving conditions which include high levels of acceleration with resultant rapid steep increase in engine speed. In such operating conditions, an enrichment of the air/fuel mixture is required, which affects the catalyst conversion efficiency. Subsequently, the power requirements and the grade of electrical assistance in such driving situations are calculated by a procedure based on both the measured exhaust emissions and the kinematic parameters of the driving dynamics collected during the experimental tests. Lastly, the share of CO and HC emissions that could be saved utilizing a hybrid motorcycle instead of a conventional thermal motorcycle is estimated through a specific environmental analysis.

Suggested Citation

  • Paolo Iodice & Enrico Fornaro & Massimo Cardone, 2022. "Hybrid Propulsion in SI Engines for New Generation Motorcycles: A Numerical-Experimental Approach to Assess Power Requirements and Emission Performance," Energies, MDPI, vol. 15(17), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6312-:d:901180
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Iodice & Giuseppe Langella & Amedeo Amoresano, 2020. "Exergetic Analysis of a New Direct Steam Generation Solar Plant Using Screw Expanders," Energies, MDPI, vol. 13(3), pages 1-19, February.
    2. Li, Jing & Li, Pengcheng & Gao, Guangtao & Pei, Gang & Su, Yuehong & Ji, Jie, 2017. "Thermodynamic and economic investigation of a screw expander-based direct steam generation solar cascade Rankine cycle system using water as thermal storage fluid," Applied Energy, Elsevier, vol. 195(C), pages 137-151.
    3. Geng, Peng & Cao, Erming & Tan, Qinming & Wei, Lijiang, 2017. "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 523-534.
    4. Paolo Iodice & Massimo Cardone, 2021. "Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions," Energies, MDPI, vol. 14(13), pages 1-18, July.
    5. Awad, Omar I. & Mamat, R. & Ali, Obed M. & Sidik, N.A.C. & Yusaf, T. & Kadirgama, K. & Kettner, Maurice, 2018. "Alcohol and ether as alternative fuels in spark ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2586-2605.
    6. Massimo Cardone & Bonaventura Gargiulo & Enrico Fornaro, 2021. "Modelling and Experimental Validation of a Hybrid Electric Propulsion System for Light Aircraft and Unmanned Aerial Vehicles," Energies, MDPI, vol. 14(13), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Won-Jin Son & Byoung Kuk Lee, 2023. "Design of Planar Transformers for LLC Converters in High Power Density On-Board Chargers for Electric Vehicles," Energies, MDPI, vol. 16(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Iodice & Amedeo Amoresano & Giuseppe Langella & Francesco Saverio Marra, 2023. "Numerical Optimization and Energetic Advantages of an Innovative Solar Power System Based on Scheffler Receiver Coupled with Volumetric Expanders," Energy & Environment, , vol. 34(3), pages 602-620, May.
    2. Paolo Iodice & Massimo Cardone, 2021. "Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions," Energies, MDPI, vol. 14(13), pages 1-18, July.
    3. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    4. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    5. Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
    6. Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).
    7. Chakrapani Nagappan Kowthaman & S. M. Ashrafur Rahman & I. M. R. Fattah, 2023. "Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines," Energies, MDPI, vol. 16(12), pages 1-18, June.
    8. Eduardo J. C. Cavalcanti & Daniel R. S. da Silva & Monica Carvalho, 2022. "Life Cycle and Exergoenvironmental Analyses of Ethanol: Performance of a Flex-Fuel Spark-Ignition Engine at Wide-Open Throttle Conditions," Energies, MDPI, vol. 15(4), pages 1-19, February.
    9. Wang, Chuang & Xing, Ziwen & Sun, Shizhong & He, Zhilong, 2020. "Loss analysis of oil-free twin-screw expanders for recovering energy in fuel cell systems by means of p-θ diagrams," Energy, Elsevier, vol. 201(C).
    10. Liu, Haifeng & Ma, Guixiang & Hu, Bin & Zheng, Zunqing & Yao, Mingfa, 2018. "Effects of port injection of hydrous ethanol on combustion and emission characteristics in dual-fuel reactivity controlled compression ignition (RCCI) mode," Energy, Elsevier, vol. 145(C), pages 592-602.
    11. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    12. Suleyman Simsek & Bulent Ozdalyan, 2018. "Improvements to the Composition of Fusel Oil and Analysis of the Effects of Fusel Oil–Gasoline Blends on a Spark-Ignited (SI) Engine’s Performance and Emissions," Energies, MDPI, vol. 11(3), pages 1-13, March.
    13. Dorota Burchart-Korol & Magdalena Gazda-Grzywacz & Katarzyna Zarębska, 2020. "Research and Prospects for the Development of Alternative Fuels in the Transport Sector in Poland: A Review," Energies, MDPI, vol. 13(11), pages 1-16, June.
    14. Bülent Özdalyan & Recep Ç. Orman, 2018. "Experimental Investigation of the Use of Waste Mineral Oils as a Fuel with Organic-Based Mn Additive," Energies, MDPI, vol. 11(6), pages 1-12, June.
    15. Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    16. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    17. Ağbulut, Ümit & Yeşilyurt, Murat Kadir & Sarıdemir, Suat, 2021. "Wastes to energy: Improving the poor properties of waste tire pyrolysis oil with waste cooking oil methyl ester and waste fusel alcohol – A detailed assessment on the combustion, emission, and perform," Energy, Elsevier, vol. 222(C).
    18. Ryszard Palka & Kamil Cierzniewski & Marcin Wardach & Pawel Prajzendanc, 2023. "Research on Innovative Hybrid Excited Synchronous Machine," Energies, MDPI, vol. 16(18), pages 1-14, September.
    19. Yin, Xiaojun & Yue, Guangzhao & Liu, Junlong & Duan, Hao & Duan, Qimeng & Kou, Hailiang & Wang, Ying & Yang, Bo & Zeng, Ke, 2023. "Investigation into the operating range of a dual-direct injection engine fueled with methanol and diesel," Energy, Elsevier, vol. 267(C).
    20. Li, Pengcheng & Lin, Haiwei & Li, Jing & Cao, Qing & Wang, Yandong & Pei, Gang & Jie, Desuan & Zhao, Zilong, 2022. "Analysis of a direct vapor generation system using cascade steam-organic Rankine cycle and two-tank oil storage," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6312-:d:901180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.