IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5872-d887303.html
   My bibliography  Save this article

Thermal Performance Analysis of Materials and Configurations for Cylindrical Sidewalls of Charcoal Kilns

Author

Listed:
  • Antão Rodrigo Valentim

    (Federal Institute of Paraná (IFPR), Av. José Felipe Tequinha, 1400, Paranavaí 87703-536, Brazil)

  • Jhon Ramírez Behainne

    (Department of Mechanical Engineering, Federal University of Technology-Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa 84017-220, Brazil)

  • Aldo Braghini Junior

    (Department of Industrial Engineering, Federal University of Technology-Paraná, Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa 84017-220, Brazil)

Abstract

Most of the charcoal in the world comes from small and medium-sized producers, using rudimentary carbonization kilns that require significant time or energy during the heating and cooling stages of the process. Despite advances in improving the performance, the influence of materials used in the sidewalls of these kilns has been scarcely studied. Therefore, based on numerical simulations, the present study analyses the thermal performance of cylindrical sidewalls composed of combinations of metallic materials, ceramic materials, and insulating blankets grouped in three configurations: configuration I (sidewall with just one material), configuration II (sidewall with two materials assembled in series), and configuration III (pivoting sidewall). Results were encouraging, especially when comparing kiln configuration I with the novel configuration III. Simulations suggested that the proposed configuration III could reduce the heating time by 62%, the cooling time by 91%, the heat supplied to sidewalls by 80%, and the heat loss to the external environment by 99.7%. The save of wood charged into the charcoal kiln grew up to 7.3 times, varying the thickness of the inner layer of the sidewall.

Suggested Citation

  • Antão Rodrigo Valentim & Jhon Ramírez Behainne & Aldo Braghini Junior, 2022. "Thermal Performance Analysis of Materials and Configurations for Cylindrical Sidewalls of Charcoal Kilns," Energies, MDPI, vol. 15(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5872-:d:887303
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5872/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silva, F.T.M. & Ataíde, C.H., 2019. "Valorization of eucalyptus urograndis wood via carbonization: Product yields and characterization," Energy, Elsevier, vol. 172(C), pages 509-516.
    2. Adam, J.C., 2009. "Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln (Eco-charcoal)," Renewable Energy, Elsevier, vol. 34(8), pages 1923-1925.
    3. Kamil Roman & Jan Barwicki & Witold Rzodkiewicz & Mariusz Dawidowski, 2021. "Evaluation of Mechanical and Energetic Properties of the Forest Residues Shredded Chips during Briquetting Process," Energies, MDPI, vol. 14(11), pages 1-11, June.
    4. Rodrigues, Thaisa & Braghini Junior, Aldo, 2019. "Technological prospecting in the production of charcoal: A patent study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 170-183.
    5. Peláez-Samaniego, M.R. & Garcia-Perez, M. & Cortez, L.B. & Rosillo-Calle, F. & Mesa, J., 2008. "Improvements of Brazilian carbonization industry as part of the creation of a global biomass economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1063-1086, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    2. Pereira, Emanuele Graciosa & Martins, Márcio Arêdes & Pecenka, Ralf & Carneiro, Angélica de Cássia O., 2017. "Pyrolysis gases burners: Sustainability for integrated production of charcoal, heat and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 592-600.
    3. Rodrigues, Thaisa & Braghini Junior, Aldo, 2019. "Technological prospecting in the production of charcoal: A patent study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 170-183.
    4. Lima, Michael Douglas Roque & Bufalino, Lina & Scatolino, Mário Vanoli & Hein, Paulo Ricardo Gherardi & Carneiro, Angélica de Cássia Oliveira & Trugilho, Paulo Fernando & Protásio, Thiago de Paula, 2023. "Segregating Amazonia logging wastes from sustainable forest management improves carbonization in brick kilns," Renewable Energy, Elsevier, vol. 211(C), pages 772-788.
    5. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    6. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    7. Saidur, R. & Hossain, M.S. & Islam, M.R. & Fayaz, H. & Mohammed, H.A., 2011. "A review on kiln system modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2487-2500, June.
    8. Mateusz Leszczyński & Kamil Roman, 2023. "Hot-Water Extraction (HWE) Method as Applied to Lignocellulosic Materials from Hemp Stalk," Energies, MDPI, vol. 16(12), pages 1-14, June.
    9. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    10. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    11. de Paula Protásio, Thiago & Roque Lima, Michael Douglas & Scatolino, Mário Vanoli & Silva, Alanna Barishinikov & Rodrigues de Figueiredo, Izabel Cristina & Gherardi Hein, Paulo Ricardo & Trugilho, Pau, 2021. "Charcoal productivity and quality parameters for reliable classification of Eucalyptus clones from Brazilian energy forests," Renewable Energy, Elsevier, vol. 164(C), pages 34-45.
    12. Payakkawan, Poomyos & Areejit, Suwilai & Sooraksa, Pitikhate, 2014. "Design, fabrication and operation of continuous microwave biomass carbonization system," Renewable Energy, Elsevier, vol. 66(C), pages 49-55.
    13. Felix Charvet & Arlindo Matos & José Figueiredo da Silva & Luís Tarelho & Mariana Leite & Daniel Neves, 2022. "Charcoal Production in Portugal: Operating Conditions and Performance of a Traditional Brick Kiln," Energies, MDPI, vol. 15(13), pages 1-21, June.
    14. Ivan Brandić & Alan Antonović & Lato Pezo & Božidar Matin & Tajana Krička & Vanja Jurišić & Karlo Špelić & Mislav Kontek & Juraj Kukuruzović & Mateja Grubor & Ana Matin, 2023. "Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models," Energies, MDPI, vol. 16(2), pages 1-10, January.
    15. Kamil Roman & Witold Rzodkiewicz & Marek Hryniewicz, 2023. "Analysis of Forest Biomass Wood Briquette Structure According to Different Tests of Density," Energies, MDPI, vol. 16(6), pages 1-14, March.
    16. Feuerbacher, Arndt & Siebold, Matthias & Chhetri, Ashit & Lippert, Christian & Sander, Klas, 2016. "Increasing forest utilization within Bhutan's forest conservation framework: The economic benefits of charcoal production," Forest Policy and Economics, Elsevier, vol. 73(C), pages 99-111.
    17. Pottmaier, D. & Melo, C.R. & Sartor, M.N. & Kuester, S. & Amadio, T.M. & Fernandes, C.A.H. & Marinha, D. & Alarcon, O.E., 2013. "The Brazilian energy matrix: From a materials science and engineering perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 678-691.
    18. Helberth Júnnior Santos Lopes & Nemailla Bonturi & Everson Alves Miranda, 2020. "Rhodotorula toruloides Single Cell Oil Production Using Eucalyptus urograndis Hemicellulose Hydrolysate as a Carbon Source," Energies, MDPI, vol. 13(4), pages 1-11, February.
    19. Das, Karabee & Hiloidhari, Moonmoon & Baruah, D.C. & Nonhebel, Sanderine, 2018. "Impact of time expenditure on household preferences for cooking fuels," Energy, Elsevier, vol. 151(C), pages 309-316.
    20. Ni, Liangmeng & Feng, Zixing & Gao, Qi & Hou, Yanmei & He, Yuyu & Ren, Hao & Su, Mengfu & Liu, Zhijia & Hu, Wanhe, 2022. "A novel mechanical kiln for bamboo molded charcoals manufacturing," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5872-:d:887303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.