IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5824-d885498.html
   My bibliography  Save this article

The Stress Evolution of Adjacent Working Faces Passing through an Abandoned Roadway and the Damage Depth of the Floor

Author

Listed:
  • Song Shi

    (College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China)

  • Yichen Miao

    (Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China)

  • Haikuan Wu

    (School of Emergency Science, Xihua University, Chengdu 610039, China)

  • Zhipeng Xu

    (College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China)

  • Changwu Liu

    (College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China)

Abstract

An advanced break or a vast region of pressurisation may occur when the working face passes through an abandoned roadway, resulting in a roof falling or water inrush. The stress evolution of the working face passing through an abandoned roadway in a coal mine was comprehensively discussed using theoretical analysis, numerical simulation, and field monitoring. In this study, the calculated critical width of the abandoned roadway where the main roof was bound to an advanced break was 5.4 m. Reducing the suspended length of the main roof is beneficial to the stability of the working face’s passage across the abandoned roadway. The maximum abutment stress on the roof occurred at the working face through a semi-abandoned roadway, reaching 44.3 MPa. Subsequently, it decreased sharply until the working face completely passed and returned to the normal level. The damage depths of the floor strata from the field monitoring were 15 and 20 m, which showed that the use of hydraulic fracturing technology combined with floor grouting and hydraulic support for the abandoned roadway was proposed to stabilise the working face for safe mining.

Suggested Citation

  • Song Shi & Yichen Miao & Haikuan Wu & Zhipeng Xu & Changwu Liu, 2022. "The Stress Evolution of Adjacent Working Faces Passing through an Abandoned Roadway and the Damage Depth of the Floor," Energies, MDPI, vol. 15(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5824-:d:885498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weidong Pan & Shaopeng Zhang & Yi Liu, 2020. "Safe and Efficient Coal Mining Below the Goaf: A Case Study," Energies, MDPI, vol. 13(4), pages 1-15, February.
    2. Fan, Jinyang & Liu, Wei & Jiang, Deyi & Chen, Junchao & Ngaha Tiedeu, William & Chen, Jie & JJK, Deaman, 2018. "Thermodynamic and applicability analysis of a hybrid CAES system using abandoned coal mine in China," Energy, Elsevier, vol. 157(C), pages 31-44.
    3. Yuantian Sun & Guichen Li & Junfei Zhang & Junbo Sun & Jiandong Huang & Reza Taherdangkoo, 2021. "New Insights of Grouting in Coal Mass: From Small-Scale Experiments to Microstructures," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lele Xiao & Fan Li & Chao Niu & Gelian Dai & Qian Qiao & Chengsen Lin, 2022. "Evaluation of Water Inrush Hazard in Coal Seam Roof Based on the AHP-CRITIC Composite Weighted Method," Energies, MDPI, vol. 16(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Di & Wang, J.G. & Hu, Bowen & Yang, Sheng-Qi, 2020. "A coupled thermo-hydro-mechanical model for evaluating air leakage from an unlined compressed air energy storage cavern," Renewable Energy, Elsevier, vol. 146(C), pages 907-920.
    2. Xutong Zhang & Fangtian Wang & Hongfei Qu & Chao Liu & Zhe Li & Wenhua Hao, 2023. "Surrounding Rocks Deformation Mechanism and Roof Cutting-Grouting Joint Control Technology for Soft and Thick Coal Seam Roadway," Sustainability, MDPI, vol. 15(21), pages 1-23, October.
    3. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    4. Gao, Renbo & Wu, Fei & Zou, Quanle & Chen, Jie, 2022. "Optimal dispatching of wind-PV-mine pumped storage power station: A case study in Lingxin Coal Mine in Ningxia Province, China," Energy, Elsevier, vol. 243(C).
    5. Roham Torabi & Alvaro Gomes & Diogo Lobo & Fernando Morgado‐Dias, 2020. "Modelling demand flexibility and energy storage to support increased penetration of renewable energy resources on Porto Santo," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1118-1132, December.
    6. Qingliang Chang & Yifeng Sun & Qiang Leng & Zexu Liu & Huaqiang Zhou & Yuantian Sun, 2021. "Stability Analysis of Paste Filling Roof by Cut and Fill Mining," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    7. Kai Chen & Kai Zhan & Fan Pang & Xiaocong Yang & Da Zhang, 2022. "R-LIO: Rotating Lidar Inertial Odometry and Mapping," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    8. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    9. Shengrong Xie & Yiyi Wu & Fangfang Guo & Dongdong Chen & En Wang & Xiao Zhang & Hang Zou & Ruipeng Liu & Xiang Ma & Shijun Li, 2022. "Interaction Mechanism of the Upper and Lower Main Roofs with Different Properties in Close Coal Seams: A Case Study," Energies, MDPI, vol. 15(15), pages 1-21, July.
    10. Wang, Junbao & Wang, Xiaopeng & Zhang, Qiang & Song, Zhanping & Zhang, Yuwei, 2021. "Dynamic prediction model for surface settlement of horizontal salt rock energy storage," Energy, Elsevier, vol. 235(C).
    11. Ma, Yan & Rao, QiuHua & Huang, Dianyi & Li, Peng & Yi, Wei & Sun, Dongliang, 2022. "A new theoretical model of thermo-gas-mechanical (TGM) coupling field for underground multi-layered cavern of compressed air energy storage," Energy, Elsevier, vol. 257(C).
    12. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Florencio Fernández-Alaiz & Ana Maria Castañón & Fernando Gómez-Fernández & Antonio Bernardo-Sánchez & Marc Bascompta, 2020. "Determination and Fire Analysis of Gob Characteristics Using CFD," Energies, MDPI, vol. 13(20), pages 1-11, October.
    14. Sen Yang & Guichen Li & Ruiyang Bi & Bicheng Yao & Ruiguang Feng & Yuantian Sun, 2021. "The Stability of Roadway Groups under Rheology Coupling Mining Disturbance," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    15. Peng Li & Zongguang Chen & Xuezhi Zhou & Haisheng Chen & Zhi Wang, 2022. "Temperature Regulation Model and Experimental Study of Compressed Air Energy Storage Cavern Heat Exchange System," Sustainability, MDPI, vol. 14(11), pages 1-16, June.
    16. Fan, Xin-li & Ma, Li & Sheng, You-jie & Liu, Xi-xi & Wei, Gao-ming & Liu, Shang-ming, 2023. "Experimental investigation on the characteristics of XG/GG/HPAM gel foam and prevention of coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
    17. Fan, Jinyang & Xie, Heping & Chen, Jie & Jiang, Deyi & Li, Cunbao & Ngaha Tiedeu, William & Ambre, Julien, 2020. "Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs," Applied Energy, Elsevier, vol. 258(C).
    18. Fulian He & Bingquan Liu & Deqiu Wang & Dongdong Chen & Yanhao Wu & Liming Song & Xiang Ma & Qiucheng Ye & Zaisheng Jiang & Fangfang Guo & Weiguang Wang & Yiyi Wu, 2022. "Study on Stability and Control of Surrounding Rock in the Stopping Space with Fully Mechanized Top Coal Caving under Goaf," Energies, MDPI, vol. 15(22), pages 1-22, November.
    19. Pottie, Daniel L.F. & Ferreira, Rafael A.M. & Maia, Thales A.C. & Porto, Matheus P., 2020. "An alternative sequence of operation for Pumped-Hydro Compressed Air Energy Storage (PH-CAES) systems," Energy, Elsevier, vol. 191(C).
    20. Kang Yanfei & Fan Jinyang & Liu Peng & Du Junsheng & Jiang Deyi, 2021. "Permeability evolution in tectonic coal: The roles of moisture and pressurized water‐injection," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 633-646, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5824-:d:885498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.