IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225004645.html
   My bibliography  Save this article

Atomization law and dust reduction effect of air-atomizing nozzles determined by CFD and experiments

Author

Listed:
  • Peng, Huitian
  • Peng, Yifei
  • Nie, Wen
  • Liu, Fei
  • Xu, Changwei

Abstract

Air-atomizing nozzles have a good effect on the deposition of respirable dust in airflow by producing fine and evenly distributed droplets. However, due to the lack of research on the atomization mechanism of air-atomizing nozzles, it is difficult to obtain spray parameters for improved dust reduction effects, which is hampering the development of ways to reduce coal mine dust. In this study, a combination of theoretical analysis, numerical simulation, experimental measurements, and field application was used to address this knowledge gap. The volume of fluid to discrete phase model was employed to accurately simulate the continuous atomization process of the internal and external flow fields of air-atomizing nozzles. Experiments were performed to determine the nozzle atomization characteristics. It was observed that with increasing air supply pressure, the degree of water flow fragmentation in the mixing chamber and the fluid domain near the nozzle area also increased. By considering the atomization angle, droplet size, concentration, velocity, and other characteristic parameters, the optimal air supply pressure was determined to be 0.4 MPa. The theoretical results were verified in Wangpo Coal Mine. When the air supply pressure was 0.4 MPa, the efficiency of respirable dust reduction reached 92.07 %, thus meeting the requirements for dust reduction.

Suggested Citation

  • Peng, Huitian & Peng, Yifei & Nie, Wen & Liu, Fei & Xu, Changwei, 2025. "Atomization law and dust reduction effect of air-atomizing nozzles determined by CFD and experiments," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004645
    DOI: 10.1016/j.energy.2025.134822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Pengxiang & Zhuo, Risheng & Li, Shugang & Lin, Haifei & Shu, Chi-Min & Shuang, Haiqing & Wei, Zongyong, 2023. "Greenhouse gas protection and control based upon the evolution of overburden fractures under coal mining: A review of methods, influencing factors, and techniques," Energy, Elsevier, vol. 284(C).
    2. Nie, Wen & Jiang, Chenwang & Liu, Qiang & Guo, Lidian & Hua, Yun & Zhang, Haonan & Jiang, Bingyou & Zhu, Zilian, 2024. "Study of highly efficient control and dust removal system for double-tunnel boring processes in coal mines," Energy, Elsevier, vol. 289(C).
    3. Xie, Sen & Yu, Haiming & Ye, Yuxi & Zhao, Junwei & Hou, Chuangen & Zhao, Dongliang, 2023. "Research on a new method of “blocking-sealing” dust control and removal in fully mechanized heading face," Energy, Elsevier, vol. 283(C).
    4. Ma, Xin & Wang, Shuang & Li, Fashe & Zhang, Huicong & Jiang, Shang & Sui, Meng, 2022. "Effect of air flow rate and temperature on the atomization characteristics of biodiesel in internal and external flow fields of the pressure swirl nozzle," Energy, Elsevier, vol. 253(C).
    5. Xing, Zhizhong & Zhao, Shuanfeng & Guo, Wei & Meng, Fanyuan & Guo, Xiaojun & Wang, Shenquan & He, Haitao, 2023. "Coal resources under carbon peak: Segmentation of massive laser point clouds for coal mining in underground dusty environments using integrated graph deep learning model," Energy, Elsevier, vol. 285(C).
    6. Nie, Wen & Li, Jianjun & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Cha, Xingpeng & Yi, Shixing & Mwabaima, Felicie Ilele, 2024. "Study of spray atomization law and dust suppression effect of a wet dust catcher on a hydraulic support," Energy, Elsevier, vol. 305(C).
    7. Fan, Jinyang & Liu, Wei & Jiang, Deyi & Chen, Junchao & Ngaha Tiedeu, William & Chen, Jie & JJK, Deaman, 2018. "Thermodynamic and applicability analysis of a hybrid CAES system using abandoned coal mine in China," Energy, Elsevier, vol. 157(C), pages 31-44.
    8. Nie, Wen & Cha, Xingpeng & Bao, Qiu & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Zhang, Xu & Ma, Qingxin & Guo, Cheng & Yi, Shixing & Jiang, Chenwang, 2023. "Study on dust pollution suppression of mine wind-assisted spray device based on orthogonal test and CFD simulation," Energy, Elsevier, vol. 263(PB).
    9. Cheng, Chuanxing & Liu, Qiang & Hua, Yun & Guo, Lidian & Zhang, Haonan & Zhu, Zilian & Nie, Wen, 2024. "Analysis of a double-pressure double-extraction (DPDE) control dust removal system and optimal installation position of an air curtain generator," Energy, Elsevier, vol. 313(C).
    10. Du, Xuanhong & Xue, Junhua & Yu, Lan & Lei, Wulin & Ma, Hengfei & Cao, Chen-Rui & Shu, Chi-Min & Li, Yanju, 2024. "Coal damage and energy characteristics during shallow mining to deep mining," Energy, Elsevier, vol. 291(C).
    11. Deng, Jun & Yang, Nannan & Wang, Caiping & Yin, Deng & Xiaoyong, Zhao & He, Yongjun, 2023. "Study on staged heat transfer law of coal spontaneous combustion in deep mines," Energy, Elsevier, vol. 285(C).
    12. Xu, Changwei & Nie, Wen & Peng, Huitian & Zhang, Shaobo & Liu, Fei & Yi, Shixing & Cha, Xingpeng & Mwabaima, Felicie Ilele, 2023. "Numerical simulation of the dynamic wetting of coal dust by spray droplets," Energy, Elsevier, vol. 270(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Wen & Li, Jianjun & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Cha, Xingpeng & Yi, Shixing & Mwabaima, Felicie Ilele, 2024. "Study of spray atomization law and dust suppression effect of a wet dust catcher on a hydraulic support," Energy, Elsevier, vol. 305(C).
    2. Jiang, Bingyou & Liu, Zhuang & Zhao, Yang & Zhang, Xiaoyi & Wang, Xiao-Han & Ji, Ben & Zhang, Yi & Huang, Jinshan, 2024. "Development of an eco-friendly dust suppressant based on modified pectin: experimental and theoretical investigations," Energy, Elsevier, vol. 289(C).
    3. Nie, Wen & Jiang, Chenwang & Sun, Ning & Guo, Lidian & Xue, Qianqian & Liu, Qiang & Liu, Chengyi & Cha, Xingpeng & Yi, Shixing, 2023. "Analysis of multi-factor ventilation parameters for reducing energy air pollution in coal mines," Energy, Elsevier, vol. 278(PA).
    4. Cheng, Chuanxing & Liu, Qiang & Hua, Yun & Guo, Lidian & Zhang, Haonan & Zhu, Zilian & Nie, Wen, 2024. "Analysis of a double-pressure double-extraction (DPDE) control dust removal system and optimal installation position of an air curtain generator," Energy, Elsevier, vol. 313(C).
    5. Zhang, Tian & Liu, Hongwei & Jing, Deji & Ge, Shaocheng & Ren, Shuaishuai & Yu, Tao, 2025. "Study and application of dynamic microfog dust control technology considering the influence of the induced airflow of coal flow," Energy, Elsevier, vol. 321(C).
    6. Nie, Wen & Cai, Yuankun & Wang, Luyao & Liu, Qiang & Jiang, Chenwang & Hua, Yun & Cheng, Chuanxing & Zhang, Haonan, 2024. "Coupled diffusion law of windflow-gas-dust in tunnel energy extraction processes and the location of optimal pollution control exhaust duct," Energy, Elsevier, vol. 304(C).
    7. Wu, Di & Wang, J.G. & Hu, Bowen & Yang, Sheng-Qi, 2020. "A coupled thermo-hydro-mechanical model for evaluating air leakage from an unlined compressed air energy storage cavern," Renewable Energy, Elsevier, vol. 146(C), pages 907-920.
    8. Wang, Xiaorui & Zhang, Qinghe & Yuan, Liang, 2024. "A coupled thermal-force-chemical-displacement multi-field model for underground coal gasification based on controlled retraction injection point technology and its thermal analysis," Energy, Elsevier, vol. 293(C).
    9. Yuannan Zheng & Bo Ren & Guofeng Yu, 2024. "Influence of Long Pressure and Short Suction Ventilation Parameters on Air Flow Field and Dust Migration in Driving Face," Sustainability, MDPI, vol. 16(17), pages 1-21, September.
    10. Zhang, Yi & Jiang, Bingyou & Zhao, Yang & Zheng, Yuannan & Wang, Shiju & Wang, Xiao-Han & Lu, Kunlun & Ren, Bo & Nie, Wen & Yu, Haiming & Liu, Zhuang & Xu, Shuo, 2024. "Synergistic effect of surfactants and nanoparticles on the wettability of coal: An experimental and simulation study," Energy, Elsevier, vol. 295(C).
    11. Sun, Zhongbo & Zhao, Yixin & Bolz, Pascal & Côte, Claire & Ren, Jiandong, 2025. "A multimethod GIS-based framework for site selection of underground pumped storage power stations using closing coal mines: A case study of the Shanxi province, China," Renewable Energy, Elsevier, vol. 243(C).
    12. Xiang, Yue & Zhang, Guohua & Wang, Xinjin & Zhang, Guoyin & Xiong, Feng & Tang, Zhicheng & Hua, Dongjie, 2025. "Load-sharing characteristics of lined rock caverns of compressed air energy storage system: A theoretical analysis," Applied Energy, Elsevier, vol. 388(C).
    13. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    14. Gao, Renbo & Wu, Fei & Zou, Quanle & Chen, Jie, 2022. "Optimal dispatching of wind-PV-mine pumped storage power station: A case study in Lingxin Coal Mine in Ningxia Province, China," Energy, Elsevier, vol. 243(C).
    15. Hu, Chaobin & Shao, Wenlong & Chen, Xiaomiao & Kong, Xiangguo, 2025. "A comprehensive design method to balance efficiency and noise for high-thrust electric UAV propellers," Energy, Elsevier, vol. 327(C).
    16. Li, Hang & Ma, Hongling & Zhao, Kai & Zhu, Shijie & Yang, Kun & Zeng, Zhen & Zheng, Zhuyan & Yang, Chunhe, 2024. "Parameter design of the compressed air energy storage salt cavern in highly impure rock salt formations," Energy, Elsevier, vol. 286(C).
    17. Roham Torabi & Alvaro Gomes & Diogo Lobo & Fernando Morgado‐Dias, 2020. "Modelling demand flexibility and energy storage to support increased penetration of renewable energy resources on Porto Santo," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1118-1132, December.
    18. Islamova, A.G. & Shlegel, N.E. & Strizhak, P.A., 2024. "Influence of collision conditions between aerosol flows of liquid droplets and solid particles typical for wet vortex dust collectors," Energy, Elsevier, vol. 298(C).
    19. Song Shi & Yichen Miao & Haikuan Wu & Zhipeng Xu & Changwu Liu, 2022. "The Stress Evolution of Adjacent Working Faces Passing through an Abandoned Roadway and the Damage Depth of the Floor," Energies, MDPI, vol. 15(16), pages 1-17, August.
    20. Wang, Peng & Guo, Zixuan & Zhang, Shengyu & Zhu, Lin & Yi, Liqi & Song, Xiaohua, 2024. "Strategic behaviors of renewable energy generation companies participating in the electricity and carbon coupled markets based on non-cooperative game theory," Energy, Elsevier, vol. 312(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.