IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5533-d876153.html
   My bibliography  Save this article

Interaction Mechanism of the Upper and Lower Main Roofs with Different Properties in Close Coal Seams: A Case Study

Author

Listed:
  • Shengrong Xie

    (School of Energy and Mining Engineering, China University of Mining & Technology, Beijing 100083, China)

  • Yiyi Wu

    (School of Energy and Mining Engineering, China University of Mining & Technology, Beijing 100083, China)

  • Fangfang Guo

    (School of Energy and Mining Engineering, China University of Mining & Technology, Beijing 100083, China)

  • Dongdong Chen

    (School of Energy and Mining Engineering, China University of Mining & Technology, Beijing 100083, China)

  • En Wang

    (School of Energy and Mining Engineering, China University of Mining & Technology, Beijing 100083, China
    Department of Civil Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada)

  • Xiao Zhang

    (School of Energy and Mining Engineering, China University of Mining & Technology, Beijing 100083, China)

  • Hang Zou

    (School of Energy and Mining Engineering, China University of Mining & Technology, Beijing 100083, China)

  • Ruipeng Liu

    (School of Energy and Mining Engineering, China University of Mining & Technology, Beijing 100083, China)

  • Xiang Ma

    (School of Energy and Mining Engineering, China University of Mining & Technology, Beijing 100083, China)

  • Shijun Li

    (State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China)

Abstract

Close-distance coal seams are widely distributed in China, and the mining of overlying coal seams leads to floor damage. To grasp the properties and the fracture spans of the damaged main roof in the underlying coal seam, combining the calculation of the floor damage depth with rock damage theory and the formulas for calculating the first and periodic weighting intervals of the damaged main roof and the instability conditions of the damaged key blocks are obtained. Three interaction stability mechanics models are proposed for key blocks with different properties of the upper and lower main roof, and the instability conditions of the lower damaged key blocks are obtained when the fracture lines overlap. When combined with a specific example, the field monitoring verified the calculation results. The research results are as follows: (1) The first and periodic weighting intervals, horizontal thrust between blocks, and critical load of instability of the damaged main roof are significantly reduced. Still, there are differences in its reduction under different loads, rotation angles, and lumpiness. (2) When the fracture lines of the upper and lower main roofs overlap, the stability of the damaged key blocks is the lowest. There are three linkage stability regions in the critical load curves of the two key blocks. (3) In this case, the damage equivalent of the main roof is 0.397, which belongs to the local damage type. Its first and periodic weighting intervals are 40 m and 16 m, which is 22% and 24% less than when there is no damage. (4) A supporting load of 0.489 MPa is required to maintain the stability of the upper key block, and the lower damaged key block is prone to rotary and sliding instability during the first and periodic weighting, respectively. Thus, the supports need to bear a total of 0.988 MPa and 0.761 MPa to maintain the stability of the two key blocks simultaneously. The ground pressure data monitored on-site is in accord with the calculation results.

Suggested Citation

  • Shengrong Xie & Yiyi Wu & Fangfang Guo & Dongdong Chen & En Wang & Xiao Zhang & Hang Zou & Ruipeng Liu & Xiang Ma & Shijun Li, 2022. "Interaction Mechanism of the Upper and Lower Main Roofs with Different Properties in Close Coal Seams: A Case Study," Energies, MDPI, vol. 15(15), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5533-:d:876153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weidong Pan & Shaopeng Zhang & Yi Liu, 2020. "Safe and Efficient Coal Mining Below the Goaf: A Case Study," Energies, MDPI, vol. 13(4), pages 1-15, February.
    2. Dongdong Chen & Xiaoyu Wu & Shengrong Xie & Yanding Sun & Qing Zhang & En Wang & Yaohui Sun & Long Wang & Hui Li & Zaisheng Jiang & Xiaowei Wu, 2020. "Study on the Thin Plate Model with Elastic Foundation Boundary of Overlying Strata for Backfill Mining," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, March.
    3. Chunyuan Li & Jianping Zuo & Yue Shi & Chunchen Wei & Yuqing Duan & Yong Zhang & Hong Yu, 2021. "Deformation and fracture at floor area and the correlation with main roof breakage in deep longwall mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1731-1755, June.
    4. Feng Cui & Chong Jia & Xingping Lai & Yanbing Yang & Shuai Dong, 2020. "Study on the Law of Fracture Evolution under Repeated Mining of Close-Distance Coal Seams," Energies, MDPI, vol. 13(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongdong Chen & Jingkun Zhu & Qiucheng Ye & Xiang Ma & Shengrong Xie & Wenke Guo & Zijian Li & Zhiqiang Wang & Shaohua Feng & Xiangxiang Yan, 2023. "Application of Gob-Side Entry Driving in Fully Mechanized Caving Mining: A Review of Theory and Technology," Energies, MDPI, vol. 16(6), pages 1-26, March.
    2. Fulian He & Bingquan Liu & Deqiu Wang & Dongdong Chen & Yanhao Wu & Liming Song & Xiang Ma & Qiucheng Ye & Zaisheng Jiang & Fangfang Guo & Weiguang Wang & Yiyi Wu, 2022. "Study on Stability and Control of Surrounding Rock in the Stopping Space with Fully Mechanized Top Coal Caving under Goaf," Energies, MDPI, vol. 15(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengpeng Wang & Yaodong Jiang & Qingshan Ren, 2022. "Roof Hydraulic Fracturing for Preventing Floor Water Inrush under Multi Aquifers and Mining Disturbance: A Case Study," Energies, MDPI, vol. 15(3), pages 1-22, February.
    2. Yihong Liu & Hongbao Zhao & Shaoqiang Liu & Wenhao Sun, 2022. "Asymmetric damage mechanism of floor roadway based on zonal damage characteristics of longwall panel floor: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 1015-1041, October.
    3. Song Shi & Yichen Miao & Haikuan Wu & Zhipeng Xu & Changwu Liu, 2022. "The Stress Evolution of Adjacent Working Faces Passing through an Abandoned Roadway and the Damage Depth of the Floor," Energies, MDPI, vol. 15(16), pages 1-17, August.
    4. Qinqiang Guo & Haoxuan Yu & Zhenyu Dan & Shuai Li, 2021. "Mining Method Optimization of Gently Inclined and Soft Broken Complex Ore Body Based on AHP and TOPSIS: Taking Miao-Ling Gold Mine of China as an Example," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    5. Feng Zhang & Jinshan Zhang, 2022. "Research on Joint Protection Layers and Gas Prevention Technology in Outburst Coal Seams," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    6. Wensheng Wei & Guojun Zhang & Chunyuan Li & Wenshuai Zhang & Yupeng Shen, 2023. "Mechanism and Control of Asymmetric Floor Heave in Deep Roadway Disturbed by Roof Fracture," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    7. Florencio Fernández-Alaiz & Ana Maria Castañón & Fernando Gómez-Fernández & Antonio Bernardo-Sánchez & Marc Bascompta, 2020. "Determination and Fire Analysis of Gob Characteristics Using CFD," Energies, MDPI, vol. 13(20), pages 1-11, October.
    8. Zhao, Pengxiang & Zhuo, Risheng & Li, Shugang & Lin, Haifei & Shu, Chi-Min & Shuang, Haiqing & Wei, Zongyong, 2023. "Greenhouse gas protection and control based upon the evolution of overburden fractures under coal mining: A review of methods, influencing factors, and techniques," Energy, Elsevier, vol. 284(C).
    9. Fulian He & Bingquan Liu & Deqiu Wang & Dongdong Chen & Yanhao Wu & Liming Song & Xiang Ma & Qiucheng Ye & Zaisheng Jiang & Fangfang Guo & Weiguang Wang & Yiyi Wu, 2022. "Study on Stability and Control of Surrounding Rock in the Stopping Space with Fully Mechanized Top Coal Caving under Goaf," Energies, MDPI, vol. 15(22), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5533-:d:876153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.