IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5188-d865044.html
   My bibliography  Save this article

Electrochemical Evaluation of Nickel Oxide Addition toward Lanthanum Strontium Cobalt Ferrite Cathode for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCS)

Author

Listed:
  • Ahmad Fuzamy Mohd Abd Fatah

    (School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia)

  • Ahmad Zaki Rosli

    (School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia)

  • Ahmad Azmin Mohamad

    (School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia)

  • Andanastuti Muchtar

    (Fuel Cell Institute, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Selangor, Malaysia)

  • Muhammed Ali S.A.

    (Fuel Cell Institute, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Selangor, Malaysia)

  • Noorashrina A. Hamid

    (School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia)

Abstract

A mixture of lanthanum strontium cobalt ferrite (LSCF) and nickel oxide (NiO) makes for a desirable cathode material for an IT-SOFC due to its excellent oxygen reduction capability. This study investigates the effect of NiO addition into LSCF cathode on its physical and electrochemical properties. To optimise the amount of NiO addition, both electrochemical impedance spectra and bode phase were used to examine various weight ratios of nickel oxide and LSCF cathode. Brunauer-Emmett-Teller (BET) and thermal analyses validated the electrochemical observation that the LSCF:NiO ratio yields sensible oxygen reduction reaction and stoichiometric findings. Initial characterisation, comprising of phase and bonding analyses, indicated that LSCF-NiO was successfully synthesised at 800 °C using an improved modified sol gel technique. The addition of 5% nickel oxide to LSCF results in the lowest area specific resistance (ASR) value overall. The Bode phase implies that the addition of 5% nickel oxide to LSCF reduces the impedance at low frequencies by 64.28 percent, indicating that a greater oxygen reduction process happened at the cathode. After the addition of 5 wt% NiO, a single LSCF-NiO cell may function at temperatures as low as 650 °C and the LSCF cathode power density is increased by 25.35%. The surface morphology of the LSCF-NiO cathode reveals that the average particle size is less than 100 nm, and mapping analysis demonstrated a homogenous NiO distribution over the cathode layer. Consequently, the synthesis of LSCF-NiO at intermediate temperatures (800–600 °C) revealed outstanding chemical compatibility, bonding characteristics, and electrochemical performance.

Suggested Citation

  • Ahmad Fuzamy Mohd Abd Fatah & Ahmad Zaki Rosli & Ahmad Azmin Mohamad & Andanastuti Muchtar & Muhammed Ali S.A. & Noorashrina A. Hamid, 2022. "Electrochemical Evaluation of Nickel Oxide Addition toward Lanthanum Strontium Cobalt Ferrite Cathode for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCS)," Energies, MDPI, vol. 15(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5188-:d:865044
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Aslannejad, H. & Barelli, L. & Babaie, A. & Bozorgmehri, S., 2016. "Effect of air addition to methane on performance stability and coking over NiO–YSZ anodes of SOFC," Applied Energy, Elsevier, vol. 177(C), pages 179-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nurul Waheeda Mazlan & Munirah Shafiqah Murat & Chung-Jen Tseng & Oskar Hasdinor Hassan & Nafisah Osman, 2022. "Lattice Expansion and Crystallite Size Analyses of NiO-BaCe 0. 54 Zr 0. 36 Y 0. 1 O 3-δ Anode Composite for Proton Ceramic Fuel Cells Application," Energies, MDPI, vol. 15(22), pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamad Fairus Rabuni & Tao Li & Mohd Hafiz Dzarfan Othman & Faidzul Hakim Adnan & Kang Li, 2023. "Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels," Energies, MDPI, vol. 16(17), pages 1-36, September.
    2. Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Barelli, L. & Bidini, G. & Cinti, G. & Gallorini, F. & Pöniz, M., 2017. "SOFC stack coupled with dry reforming," Applied Energy, Elsevier, vol. 192(C), pages 498-507.
    4. Farnak, M. & Esfahani, J.A. & Bozorgmehri, S., 2020. "An experimental design of the solid oxide fuel cell performance by using partially oxidation reforming of natural gas," Renewable Energy, Elsevier, vol. 147(P1), pages 155-163.
    5. Subotić, Vanja & Stoeckl, Bernhard & Lawlor, Vincent & Strasser, Johannes & Schroettner, Hartmuth & Hochenauer, Christoph, 2018. "Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches," Applied Energy, Elsevier, vol. 222(C), pages 748-761.
    6. Li, Bangxin & Irvine, John T.S. & Ni, Jiupai & Ni, Chengsheng, 2022. "High-performance and durable alcohol-fueled symmetrical solid oxide fuel cell based on ferrite perovskite electrode," Applied Energy, Elsevier, vol. 306(PB).
    7. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    8. Shah, M.A.K. Yousaf & Lu, Yuzheng & Mushtaq, Naveed & Yousaf, Muhammad & Akbar, Nabeela & Xia, Chen & Yun, Sining & Zhu, Bin, 2023. "Semiconductor-membrane fuel cell (SMFC) for renewable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    9. Zhu, Jiang & Lin, Zijing, 2018. "Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions," Applied Energy, Elsevier, vol. 231(C), pages 22-28.
    10. Choi, Indae & Kim, Jung-Sik & Venkatesan, Vijay & Ranaweera, Manoj, 2017. "Fabrication and evaluation of a novel wavy Single Chamber Solid Oxide Fuel Cell via in-situ monitoring of curvature evolution," Applied Energy, Elsevier, vol. 195(C), pages 1038-1046.
    11. Kai Wang & Robert Spatschek, 2023. "Phase Field Study of Cr-Oxide Growth Kinetics in the Crofer 22 APU Alloy Supported by Wagner’s Theory," Energies, MDPI, vol. 16(8), pages 1-11, April.
    12. Steil, M.C. & Nobrega, S.D. & Georges, S. & Gelin, P. & Uhlenbruck, S. & Fonseca, F.C., 2017. "Durable direct ethanol anode-supported solid oxide fuel cell," Applied Energy, Elsevier, vol. 199(C), pages 180-186.
    13. Yang, Yang & Li, Tian & Feng, Peizhong & Wang, Xinxin & Wang, Shaorong & Ling, Yihan & Shao, Zongping, 2022. "Highly efficient conversion of oxygen-bearing low concentration coal-bed methane into power via solid oxide fuel cell integrated with an activated catalyst-modified anode microchannel," Applied Energy, Elsevier, vol. 328(C).
    14. Mao, Jingwen & Wang, Enhua & Wang, Hewu & Ouyang, Minggao & Chen, Youpeng & Hu, Haoran & Lu, Languang & Ren, Dongsheng & Liu, Yadi, 2023. "Progress in metal corrosion mechanism and protective coating technology for interconnect and metal support of solid oxide cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    15. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.
    16. Dehghan, Ali Reza & Fanaei, Mohammad Ali & Panahi, Mehdi, 2022. "Economic plantwide control of a hybrid solid oxide fuel cell - gas turbine system," Applied Energy, Elsevier, vol. 328(C).
    17. Lyu, Zewei & Shi, Wangying & Han, Minfang, 2018. "Electrochemical characteristics and carbon tolerance of solid oxide fuel cells with direct internal dry reforming of methane," Applied Energy, Elsevier, vol. 228(C), pages 556-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5188-:d:865044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.