IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p3999-d827063.html
   My bibliography  Save this article

Development and Comparison of Thermodynamic Equilibrium and Kinetic Approaches for Biomass Pyrolysis Modeling

Author

Listed:
  • Sahar Safarian

    (Department of Technology Management and Economics, Division of Environmental Systems Analysis, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

  • Magnus Rydén

    (Department of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

  • Matty Janssen

    (Department of Technology Management and Economics, Division of Environmental Systems Analysis, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

Abstract

Biomass pyrolysis is considered as a thermochemical conversion system that is performed under oxygen-depleted conditions. A large body of literature exists in which thermodynamic equilibrium (TE) and kinetic approaches have been applied to predict pyrolysis products. However, the reliability, accuracy and predictive power of both modeling approaches is an area of concern. To address these concerns, in this paper, two new simulation models based on the TE and kinetic approaches are developed using Aspen Plus, to analyze the performance of each approach. Subsequently, the results of two models are compared with modeling and experimental results available in the literature. The comparison shows that, on the one hand, the performance of the TE approach is not satisfactory and cannot be used as an effective way for pyrolysis modeling. On the other hand, the results generated by the new model based on the kinetic approach suggests that this approach is suitable for modeling biomass pyrolysis processes. Calculation of the root mean square error (RMS), to quantify the deviation of the model results from the experiment results, confirms that this kinetic model presents superior agreement with experimental data in comparison with other kinetic models in the literature. The acquired RMS for the developed kinetic method in this paper varies within the span of 1.2 to 3.2 depending on temperature (400–600 °C) and various feedstocks (pine spruce sawdust, bagasse, wood bark, beech wood and paddy straw).

Suggested Citation

  • Sahar Safarian & Magnus Rydén & Matty Janssen, 2022. "Development and Comparison of Thermodynamic Equilibrium and Kinetic Approaches for Biomass Pyrolysis Modeling," Energies, MDPI, vol. 15(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3999-:d:827063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/3999/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/3999/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peters, Jens F. & Banks, Scott W. & Bridgwater, Anthony V. & Dufour, Javier, 2017. "A kinetic reaction model for biomass pyrolysis processes in Aspen Plus," Applied Energy, Elsevier, vol. 188(C), pages 595-603.
    2. Sahar Safarian & Runar Unnthorsson & Christiaan Richter, 2020. "Techno-Economic and Environmental Assessment of Power Supply Chain by Using Waste Biomass Gasification in Iceland," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-13, June.
    3. Safarian, Sahar & Unnthorsson, Runar & Richter, Christiaan, 2020. "The equivalence of stoichiometric and non-stoichiometric methods for modeling gasification and other reaction equilibria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Mohammed J. Kabir & Ashfaque Ahmed Chowdhury & Mohammad G. Rasul, 2015. "Pyrolysis of Municipal Green Waste: A Modelling, Simulation and Experimental Analysis," Energies, MDPI, vol. 8(8), pages 1-20, July.
    5. Safarian, Sahar & Unnthorsson, Runar & Richter, Christiaan, 2020. "Performance analysis and environmental assessment of small-scale waste biomass gasification integrated CHP in Iceland," Energy, Elsevier, vol. 197(C).
    6. Khodaei, Hassan & Gonzalez, Luis & Chapela, Sergio & Porteiro, Jacobo & Nikrityuk, Petr & Olson, Chris, 2021. "CFD-based coupled multiphase modeling of biochar production using a large-scale pyrolysis plant," Energy, Elsevier, vol. 217(C).
    7. Kaushal, Priyanka & Tyagi, Rakesh, 2017. "Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN PLUS," Renewable Energy, Elsevier, vol. 101(C), pages 629-636.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janaki Komandur & Abhishek Kumar & Preethi Para & Kaustubha Mohanty, 2022. "Kinetic Parameters Estimation of Thermal and Co-Pyrolysis of Groundnut De-oiled Cake and Polyethylene Terephthalate (PET) Waste," Energies, MDPI, vol. 15(20), pages 1-12, October.
    2. Savelii Kukharets & Gennadii Golub & Marek Wrobel & Olena Sukmaniuk & Krzysztof Mudryk & Taras Hutsol & Algirdas Jasinskas & Marcin Jewiarz & Jonas Cesna & Iryna Horetska, 2022. "A Theoretical Model of the Gasification Rate of Biomass and Its Experimental Confirmation," Energies, MDPI, vol. 15(20), pages 1-15, October.
    3. Grzegorz Czerski, 2022. "Pyrolysis and Gasification of Biomass and Waste," Energies, MDPI, vol. 15(19), pages 1-5, October.
    4. Sahar Safarian, 2023. "Climate Impact Comparison of Biomass Combustion and Pyrolysis with Different Applications for Biochar Based on LCA," Energies, MDPI, vol. 16(14), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vera Marcantonio & Luisa Di Paola & Marcello De Falco & Mauro Capocelli, 2023. "Modeling of Biomass Gasification: From Thermodynamics to Process Simulations," Energies, MDPI, vol. 16(20), pages 1-30, October.
    2. HajiHashemi, MohammadSina & Mazhkoo, Shahin & Dadfar, Hossein & Livani, Ehsan & Naseri Varnosefaderani, Aliakbar & Pourali, Omid & Najafi Nobar, Shima & Dutta, Animesh, 2023. "Combined heat and power production in a pilot-scale biomass gasification system: Experimental study and kinetic simulation using ASPEN Plus," Energy, Elsevier, vol. 276(C).
    3. Safarian, Sahar & Ebrahimi Saryazdi, Seyed Mohammad & Unnthorsson, Runar & Richter, Christiaan, 2020. "Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant," Energy, Elsevier, vol. 213(C).
    4. Ajaree Suwatthikul & Siripong Limprachaya & Paisan Kittisupakorn & Iqbal Mohammed Mujtaba, 2017. "Simulation of Steam Gasification in a Fluidized Bed Reactor with Energy Self-Sufficient Condition," Energies, MDPI, vol. 10(3), pages 1-15, March.
    5. Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
    6. Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
    7. Paul Eades & Sigrid Kusch-Brandt & Sonia Heaven & Charles J. Banks, 2020. "Estimating the Generation of Garden Waste in England and the Differences between Rural and Urban Areas," Resources, MDPI, vol. 9(1), pages 1-23, January.
    8. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    9. Ahmed M. Salem & Harnek S. Dhami & Manosh C. Paul, 2022. "Syngas Production and Combined Heat and Power from Scottish Agricultural Waste Gasification—A Computational Study," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    10. Ke, Cunfeng & Zhang, Yaning & Gao, Yanan & Pan, Yaoyu & Li, Bingxi & Wang, Yunpu & Ruan, Roger, 2019. "Syngas production from microwave-assisted air gasification of biomass: Part 1 model development," Renewable Energy, Elsevier, vol. 140(C), pages 772-778.
    11. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    12. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    13. Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
    14. AlNouss, Ahmed & Parthasarathy, Prakash & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish & McKay, Gordon, 2020. "Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS," Applied Energy, Elsevier, vol. 261(C).
    15. Salina, Fernando Henriques & Molina, Felipe Braggio & Gallego, Antonio Garrido & Palacios-Bereche, Reynaldo, 2021. "Fast pyrolysis of sugarcane straw and its integration into the conventional ethanol production process through Pinch Analysis," Energy, Elsevier, vol. 215(PA).
    16. Poddar, Sourav & Sarat Chandra Babu, J., 2021. "Modelling and optimization of a pyrolysis plant using swine and goat manure as feedstock," Renewable Energy, Elsevier, vol. 175(C), pages 253-269.
    17. Besma Khiari & Mejdi Jeguirim, 2018. "Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis," Energies, MDPI, vol. 11(4), pages 1-14, March.
    18. Rachele Foffi & Elisa Savuto & Matteo Stante & Roberta Mancini & Katia Gallucci, 2022. "Study of Energy Valorization of Disposable Masks via Thermochemical Processes: Devolatilization Tests and Simulation Approach," Energies, MDPI, vol. 15(6), pages 1-24, March.
    19. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    20. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3999-:d:827063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.