IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3600-d815610.html
   My bibliography  Save this article

Hydrological and Environmental Conditions and Implications of the Operation of a Thermal Power Plant with an Open Cooling System—An Example from Poland

Author

Listed:
  • Tomasz Walczykiewicz

    (Institute of Meteorology and Water Management—National Research Institute, ul. Podleśna 61, 01-673 Warszawa, Poland)

  • Mateusz Żelazny

    (Institute of Meteorology and Water Management—National Research Institute, ul. Podleśna 61, 01-673 Warszawa, Poland)

Abstract

In Poland, coal-based thermal energy for cooling power plant installations uses a large amount of surface water. Historically, there have been cases of limitations in electricity supply due to low water levels and high temperature of water in rivers. Moreover, environmental requirements limit the possibility of using water resources for cooling purposes, pointing to the necessity to leave inviolable flows in rivers. This raises questions about the future of the operation of thermal power plants with open cooling systems and hence the research undertaken by the authors. The research consisted of a questionnaire survey, hydrological analyses, the impact assessment of climate change on the operation of power plants, and a discussion of technical solutions for water abstraction and power loss analysis in a particular power plant. The results indicate that there are power plants that are more sensitive to hydrological and environmental conditions and the temperature of the water required for cooling. In one case, keeping a power plant in operation requires the maintenance of periodic artificial damming of water. The conclusions from the research indicate that in Poland, regardless of the source of thermal energy, it is necessary to implement only closed cooling circuits.

Suggested Citation

  • Tomasz Walczykiewicz & Mateusz Żelazny, 2022. "Hydrological and Environmental Conditions and Implications of the Operation of a Thermal Power Plant with an Open Cooling System—An Example from Poland," Energies, MDPI, vol. 15(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3600-:d:815610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3600/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward A. Byers & Gemma Coxon & Jim Freer & Jim W. Hall, 2020. "Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Rafik Hirji & Richard Davis, 2009. "Environmental Flows in Water Resources Policies, Plans, and Projects : Findings and Recommendations," World Bank Publications - Books, The World Bank Group, number 2635, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Mark Ace Dela Cruz & Shinichiro Nakamura & Naota Hanasaki & Julien Boulange, 2021. "Integrated Evaluation of Changing Water Resources in an Active Ecotourism Area: The Case of Puerto Princesa City, Palawan, Philippines," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    3. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    4. Roberto Roson & Martina Sartori, 2015. "System-Wide Implications of Changing Water Availability and Agricultural Productivity in the Mediterranean Economies," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 1-30.
    5. Abdelrahman M. Farouk & Afiqah R. Radzi & Noor Suraya Romali & Mohamed Farouk & Mohamed Elgamal & Raouf Hassan & Mazen M. Omer & Rahimi A. Rahman, 2024. "Performance Indicators for Assessing Environmental Management Plan Implementation in Water Projects," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    6. Ye, Liping, 2022. "The effect of climate news risk on uncertainties," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    7. Hyungjin Shin & Gyumin Lee & Jaenam Lee & Sehoon Kim & Inhong Song, 2023. "Assessment of Agricultural Drought Vulnerability with Focus on Upland Fields and Identification of Primary Management Areas," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    8. Simon Meißner, 2021. "The Impact of Metal Mining on Global Water Stress and Regional Carrying Capacities—A GIS-Based Water Impact Assessment," Resources, MDPI, vol. 10(12), pages 1-34, November.
    9. Tanaka Mandy Mbavarira & Christine Grimm, 2021. "A Systemic View on Circular Economy in the Water Industry: Learnings from a Belgian and Dutch Case," Sustainability, MDPI, vol. 13(6), pages 1-62, March.
    10. Dong, Xiyong & Yoon, Seong-Min, 2023. "Effect of weather and environmental attentions on financial system risks: Evidence from Chinese high- and low-carbon assets," Energy Economics, Elsevier, vol. 121(C).
    11. Xia Li & Kevin P. Gallagher, 2022. "Assessing the climate change exposure of foreign direct investment," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Doan, Bao & Vo, Duc Hong & Pham, Huy, 2023. "The net economic benefits of power plants: International evidence," Energy Policy, Elsevier, vol. 175(C).
    13. Abbas Mirzaei & Mansour Zibaei, 2021. "Water Conflict Management between Agriculture and Wetland under Climate Change: Application of Economic-Hydrological-Behavioral Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 1-21, January.
    14. Carbonetti, Benjamin & Pomeroy, Robert & Richards, David L., 2014. "Overcoming the lack of political will in small scale fisheries," Marine Policy, Elsevier, vol. 44(C), pages 295-301.
    15. Farman Ali & Bing-Zhao Li & Zulfiqar Ali, 2022. "A New Weighting Scheme for Diminishing the Effect of Extreme Values in Regional Drought Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4099-4114, September.
    16. Turner, Sean W.D. & Nelson, Kristian & Voisin, Nathalie & Tidwell, Vincent & Miara, Ariel & Dyreson, Ana & Cohen, Stuart & Mantena, Dan & Jin, Julie & Warnken, Pete & Kao, Shih-Chieh, 2021. "A multi-reservoir model for projecting drought impacts on thermoelectric disruption risk across the Texas power grid," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3600-:d:815610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.