IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2729-d551728.html
   My bibliography  Save this article

Combustion Thermodynamics of Ethanol, n-Heptane, and n-Butanol in a Rapid Compression Machine with a Dual Direct Injection (DDI) Supply System

Author

Listed:
  • Ireneusz Pielecha

    (Department of Combustion Engines and Transport, Faculty of Civil and Transport Engineering, Poznan University of Technology, pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, Poland)

  • Sławomir Wierzbicki

    (Department of Mechatronics, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 11, 10-710 Olsztyn, Poland)

  • Maciej Sidorowicz

    (AC S.A., ul. 42 Pulku Piechoty 50, 15-181 Białystok, Poland)

  • Dariusz Pietras

    (Department of Combustion Engines and Vehicles, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland)

Abstract

The development of internal combustion engines involves various new solutions, one of which is the use of dual-fuel systems. The diversity of technological solutions being developed determines the efficiency of such systems, as well as the possibility of reducing the emission of carbon dioxide and exhaust components into the atmosphere. An innovative double direct injection system was used as a method for forming a mixture in the combustion chamber. The tests were carried out with the use of gasoline, ethanol, n-heptane, and n-butanol during combustion in a model test engine—the rapid compression machine (RCM). The analyzed combustion process indicators included the cylinder pressure, pressure increase rate, heat release rate, and heat release value. Optical tests of the combustion process made it possible to analyze the flame development in the observed area of the combustion chamber. The conducted research and analyses resulted in the observation that it is possible to control the excess air ratio in the direct vicinity of the spark plug just before ignition. Such possibilities occur as a result of the properties of the injected fuels, which include different amounts of air required for their stoichiometric combustion. The studies of the combustion process have shown that the combustible mixtures consisting of gasoline with another fuel are characterized by greater combustion efficiency than the mixtures composed of only a single fuel type, and that the influence of the type of fuel used is significant for the combustion process and its indicator values.

Suggested Citation

  • Ireneusz Pielecha & Sławomir Wierzbicki & Maciej Sidorowicz & Dariusz Pietras, 2021. "Combustion Thermodynamics of Ethanol, n-Heptane, and n-Butanol in a Rapid Compression Machine with a Dual Direct Injection (DDI) Supply System," Energies, MDPI, vol. 14(9), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2729-:d:551728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Wenbin & Li, Zilong & Huang, Guan & Zhang, Yaoyuan & Qian, Yong & Lu, Xingcai, 2020. "Experimental investigation of direct injection dual fuel of n-butanol and biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion mode," Applied Energy, Elsevier, vol. 266(C).
    2. Huang, Yuhan & Hong, Guang & Huang, Ronghua, 2015. "Investigation to charge cooling effect and combustion characteristics of ethanol direct injection in a gasoline port injection engine," Applied Energy, Elsevier, vol. 160(C), pages 244-254.
    3. Daniel, Ritchie & Xu, Hongming & Wang, Chongming & Richardson, Dave & Shuai, Shijin, 2013. "Gaseous and particulate matter emissions of biofuel blends in dual-injection compared to direct-injection and port injection," Applied Energy, Elsevier, vol. 105(C), pages 252-261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sławomir Wierzbicki & Kamil Duda & Maciej Mikulski, 2021. "Renewable Fuels for Internal Combustion Engines," Energies, MDPI, vol. 14(22), pages 1-3, November.
    2. Kniaziewicz, Tomasz & Zadrąg, Ryszard & Bogdanowicz, Artur, 2022. "Environmental characteristics of marine diesel engine fueled by butanol," Renewable Energy, Elsevier, vol. 182(C), pages 887-899.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Wang, Zhi & Liu, Hui & Long, Yan & Wang, Jianxin & He, Xin, 2015. "Comparative study on alcohols–gasoline and gasoline–alcohols dual-fuel spark ignition (DFSI) combustion for high load extension and high fuel efficiency," Energy, Elsevier, vol. 82(C), pages 395-405.
    3. Elena Magaril & Romen Magaril & Hussain H. Al-Kayiem & Elena Skvortsova & Ilya Anisimov & Elena Cristina Rada, 2019. "Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive," Sustainability, MDPI, vol. 11(7), pages 1-10, April.
    4. Ping Sun & Ze Liu & Wei Dong & Song Yang, 2019. "Comparative Study on the Effects of Ethanol Proportion on the Particle Numbers Emissions in a Combined Injection Engine," Energies, MDPI, vol. 12(9), pages 1-18, May.
    5. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    6. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    7. Zhang, Qiankun & Xia, Jin & Wang, Jianping & He, Zhuoyao & Zhao, Wenbin & Qian, Yong & Zheng, Liang & Liu, Rui & Lu, Xingcai, 2022. "Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    9. Jufang Zhang & Xiumin Yu & Zezhou Guo & Yinan Li & Jiahua Zhang & Dongjie Liu, 2022. "Study on Combustion and Emissions of a Spark Ignition Engine with Gasoline Port Injection Plus Acetone–Butanol–Ethanol (ABE) Direct Injection under Different Speeds and Loads," Energies, MDPI, vol. 15(19), pages 1-22, September.
    10. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    11. Storch, Michael & Hinrichsen, Florian & Wensing, Michael & Will, Stefan & Zigan, Lars, 2015. "The effect of ethanol blending on mixture formation, combustion and soot emission studied in an optical DISI engine," Applied Energy, Elsevier, vol. 156(C), pages 783-792.
    12. Sun, Daoan & Cai, Wenzhe & Li, Chunying & Lu, Jian, 2021. "Experimental study on atomization characteristics of high-energy-density fuels using a fuel slinger," Energy, Elsevier, vol. 234(C).
    13. Wang, Chongming & Zeraati-Rezaei, Soheil & Xiang, Liming & Xu, Hongming, 2017. "Ethanol blends in spark ignition engines: RON, octane-added value, cooling effect, compression ratio, and potential engine efficiency gain," Applied Energy, Elsevier, vol. 191(C), pages 603-619.
    14. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    15. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    16. Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
    17. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    18. Wang, Yuesen & Liang, Xingyu & Shu, Gequn & Wang, Xu & Bao, Jingkuan & Liu, Changwen, 2014. "Effect of lubricating oil additive package on the characterization of diesel particles," Applied Energy, Elsevier, vol. 136(C), pages 682-691.
    19. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    20. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2729-:d:551728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.