IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2643-d549002.html
   My bibliography  Save this article

Design and Simulation Studies of Hybrid Power Systems Based on Photovoltaic, Wind, Electrolyzer, and PEM Fuel Cells

Author

Listed:
  • Hussein A.Z. AL-bonsrulah

    (Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran 14588-89694, Iran)

  • Mohammed J. Alshukri

    (Department of Mechanical Engineering, Faculty of Engineering, Kufa University, Najaf 54002, Iraq)

  • Lama M. Mikhaeel

    (Department of Industrial Automation and Control Engineering, Tartous University, Tartus C5335, Syria)

  • Noor N. AL-sawaf

    (Department of Electrical Engineering, University of Mosul, Mosul 41001, Iraq)

  • Kefif Nesrine

    (Department of Power and Control engineering, Institute of Electrical and Electronic Engineering (IGEE), University of M’hamed Bougara, Boumildas 35000, Algeria)

  • M.V. Reddy

    (Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Institute of Research Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada)

  • Karim Zaghib

    (Department of Mining and Materials Engineering, McGill University, Wong Building, 3610 University Street, Montreal, QC H3A OC5, Canada)

Abstract

In recent years, the need to reduce environmental impacts and increase flexibility in the energy sector has led to increased penetration of renewable energy sources and the shift from concentrated to decentralized generation. A fuel cell is an instrument that produces electricity by chemical reaction. Fuel cells are a promising technology for ultimate energy conversion and energy generation. We see that this system is integrated, where we find that the wind and photovoltaic energy system is complementary between them, because not all days are sunny, windy, or night, so we see that this system has higher reliability to provide continuous generation. At low load hours, PV and electrolysis units produce extra power. After being compressed, hydrogen is stored in tanks. The purpose of this study is to separate the Bahr AL-Najaf Area from the main power grid and make it an independent network by itself. The PEM fuel cells were analyzed and designed, and it were found that one layer is equal to 570.96 Watt at 0.61 volts and 1.04 A/Cm 2 . The number of layers in one stack is designed to be equal to 13 layers, so that the total power of one stack is equal to 7422.48 Watt. That is, the number of stacks required to generate the required energy from the fuel cells is equal to 203 stk. This study provided an analysis of the hybrid system to cover the electricity demand in the Bahr AL-Najaf region of 1.5 MW, the attained hybrid power system TNPC cost was about 9,573,208 USD, whereas the capital cost and energy cost (COE) were about 7,750,000 USD and 0.169 USD/kWh respectively, for one year.

Suggested Citation

  • Hussein A.Z. AL-bonsrulah & Mohammed J. Alshukri & Lama M. Mikhaeel & Noor N. AL-sawaf & Kefif Nesrine & M.V. Reddy & Karim Zaghib, 2021. "Design and Simulation Studies of Hybrid Power Systems Based on Photovoltaic, Wind, Electrolyzer, and PEM Fuel Cells," Energies, MDPI, vol. 14(9), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2643-:d:549002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    2. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    3. Blasques, L.C.M. & Pinho, J.T., 2012. "Metering systems and demand-side management models applied to hybrid renewable energy systems in micro-grid configuration," Energy Policy, Elsevier, vol. 45(C), pages 721-729.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
    2. Hoang Nghia Vu & Dinh Hoang Trinh & Dat Truong Le Tri & Sangseok Yu, 2023. "Bypass Configurations of Membrane Humidifiers for Water Management in PEM Fuel Cells," Energies, MDPI, vol. 16(19), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferahtia, Seydali & Rezk, Hegazy & Olabi, A.G. & Alhumade, Hesham & Bamufleh, Hisham S. & Doranehgard, Mohammad Hossein & Abdelkareem, Mohammad Ali, 2022. "Optimal techno-economic multi-level energy management of renewable-based DC microgrid for commercial buildings applications," Applied Energy, Elsevier, vol. 327(C).
    2. Kaluthanthrige, Roshani & Rajapakse, Athula D., 2021. "Evaluation of hierarchical controls to manage power, energy and daily operation of remote off-grid power systems," Applied Energy, Elsevier, vol. 299(C).
    3. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
    4. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    5. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    6. Sergey Obukhov & Ahmed Ibrahim & Mohamed A. Tolba & Ali M. El-Rifaie, 2019. "Power Balance Management of an Autonomous Hybrid Energy System Based on the Dual-Energy Storage," Energies, MDPI, vol. 12(24), pages 1-15, December.
    7. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    9. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    10. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    11. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    12. Hallemans, L. & Ravyts, S. & Govaerts, G. & Fekriasl, S. & Van Tichelen, P. & Driesen, J., 2022. "A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids," Applied Energy, Elsevier, vol. 310(C).
    13. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    14. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    15. Nicu Bizon & Alin Gheorghita Mazare & Laurentiu Mihai Ionescu & Phatiphat Thounthong & Erol Kurt & Mihai Oproescu & Gheorghe Serban & Ioan Lita, 2019. "Better Fuel Economy by Optimizing Airflow of the Fuel Cell Hybrid Power Systems Using Fuel Flow-Based Load-Following Control," Energies, MDPI, vol. 12(14), pages 1-17, July.
    16. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    17. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    18. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    19. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2023. "Studying the impact of impeller geometrical parameters on the high-efficiency working range of pump as turbine (PAT) installed in the water distribution network," Renewable Energy, Elsevier, vol. 216(C).
    20. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2643-:d:549002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.