IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2625-d548481.html
   My bibliography  Save this article

Maximizing Energy Recovery from Beauty Leaf Tree ( Calophyllum inophyllum L.) Oil Seed Press Cake via Pyrolysis

Author

Listed:
  • Nanjappa Ashwath

    (School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
    Biological and Agricultural Engineering Department, Texas A&M University (TAMU), College Station, TX 77843, USA)

  • Hyungseok Nam

    (Biological and Agricultural Engineering Department, Texas A&M University (TAMU), College Station, TX 77843, USA
    Greenhouse Gas Laboratory, Korean Institute of Energy Research, Daejeon 34129, Korea)

  • Sergio Capareda

    (Biological and Agricultural Engineering Department, Texas A&M University (TAMU), College Station, TX 77843, USA)

Abstract

This study optimizes pyrolysis conditions that will maximize energy recovery from the Beauty Leaf Tree (BLT; Calophyllum inophyllum L.) oil seed press cake. Response surface methodology (RSM) was used to determine the behavior of pyrolysis coproducts (solid, liquid and gas) at various temperatures and residence times. One significant discovery was that 61.7% of the energy (of the whole BLT oil seed) was still retained in the BLT oil seed cake after oil extraction. Controlled pyrolysis produced various proportions of biochar, bio-oil and syngas coproducts. Predictive models were developed to estimate both the mass and energy yields of the coproducts. In all experimental runs, the biochar component had the highest mass yield and energy content. Biochar mass yields were high at the lowest operating temperature used, but the energy yields based on a high heating value (HHV) of products were optimal at higher operating temperatures. From the RSM models, energy from the biochar is optimized at a pyrolysis temperature of 425 °C and 75 min of exposure time. This biochar would have a heating value of 29.5 MJ kg −1 , which is similar to a good quality coal. At this condition, 56.6% of the energy can be recovered in the form of biochar and 20.6% from the bio-oil. The study shows that almost all the energy present in the feedstock can be recovered via pyrolysis. This indicates that commercial biodiesel producers from BLT oil seed (and other oil seed) should recover these additional valuable energies to generate high value coproducts. This additional efficient energy conversion process via controlled pyrolysis will improve the overall economics and the feasibility of 2nd generation biodiesel production from BLT—a highly potential species for cultivation in many tropical countries.

Suggested Citation

  • Nanjappa Ashwath & Hyungseok Nam & Sergio Capareda, 2021. "Maximizing Energy Recovery from Beauty Leaf Tree ( Calophyllum inophyllum L.) Oil Seed Press Cake via Pyrolysis," Energies, MDPI, vol. 14(9), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2625-:d:548481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    2. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    3. Wahyu Murti, 2017. "The Influence of Crude Oil Price in Biodiesel and its Implication on the Production of Palm Oil: The Case of Indonesia," European Research Studies Journal, European Research Studies Journal, vol. 0(2A), pages 568-580.
    4. Nam, Hyungseok & Capareda, Sergio C. & Ashwath, Nanjappa & Kongkasawan, Jinjuta, 2015. "Experimental investigation of pyrolysis of rice straw using bench-scale auger, batch and fluidized bed reactors," Energy, Elsevier, vol. 93(P2), pages 2384-2394.
    5. Kongkasawan, Jinjuta & Nam, Hyungseok & Capareda, Sergio C., 2016. "Jatropha waste meal as an alternative energy source via pressurized pyrolysis: A study on temperature effects," Energy, Elsevier, vol. 113(C), pages 631-642.
    6. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan, M.M. & Rasul, M.G. & Ashwath, N. & Khan, M.M.K. & Jahirul, M.I., 2022. "Fast pyrolysis of Beauty Leaf Fruit Husk (BLFH) in an auger reactor: Effect of temperature on the yield and physicochemical properties of BLFH oil," Renewable Energy, Elsevier, vol. 194(C), pages 1098-1109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    2. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    3. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    4. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    5. Gan, Yong Yang & Ong, Hwai Chyuan & Ling, Tau Chuan & Chen, Wei-Hsin & Chong, Cheng Tung, 2019. "Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production," Energy, Elsevier, vol. 170(C), pages 367-374.
    6. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    7. Sudalai, S & Rupesh, K J & Devanesan, M.G & Arumugam, A, 2023. "A critical review of Madhuca indica as an efficient biodiesel producer: Towards sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
    9. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    10. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    11. Kongkasawan, Jinjuta & Nam, Hyungseok & Capareda, Sergio C., 2016. "Jatropha waste meal as an alternative energy source via pressurized pyrolysis: A study on temperature effects," Energy, Elsevier, vol. 113(C), pages 631-642.
    12. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    13. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    14. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    15. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    16. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    17. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    19. Arun Teja Doppalapudi & Abul Kalam Azad & Mohammad Masud Kamal Khan, 2023. "Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine," Energies, MDPI, vol. 16(6), pages 1-18, March.
    20. Xing Yang & Hailong Wang & Peter James Strong & Song Xu & Shujuan Liu & Kouping Lu & Kuichuan Sheng & Jia Guo & Lei Che & Lizhi He & Yong Sik Ok & Guodong Yuan & Ying Shen & Xin Chen, 2017. "Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors," Energies, MDPI, vol. 10(4), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2625-:d:548481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.