IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2442-d543042.html
   My bibliography  Save this article

Subcritical Hydrothermal Co-Liquefaction of Process Rejects at a Wastepaper-Based Paper Mill with Waste Soybean Oil

Author

Listed:
  • Je-Lueng Shie

    (Department of Environmental Engineering, National l-Lan University, No.1, Sec. 1, Shen-Lung Rd., Yi-Lan 26041, Taiwan)

  • Wei-Sheng Yang

    (Department of Environmental Engineering, National l-Lan University, No.1, Sec. 1, Shen-Lung Rd., Yi-Lan 26041, Taiwan)

  • Yi-Ru Liau

    (Department of Environmental Engineering, National l-Lan University, No.1, Sec. 1, Shen-Lung Rd., Yi-Lan 26041, Taiwan)

  • Tian-Hui Liau

    (Department of Environmental Engineering, National l-Lan University, No.1, Sec. 1, Shen-Lung Rd., Yi-Lan 26041, Taiwan)

  • Hong-Ren Yang

    (Department of Environmental Engineering, National l-Lan University, No.1, Sec. 1, Shen-Lung Rd., Yi-Lan 26041, Taiwan)

Abstract

This study used the subcritical hydrothermal liquefaction technique (SHLT) in the co- liquefaction of process rejects at a wastepaper-based paper mill (PRWPM) and waste soybean oil (WSO) for the production of biofuels and bio-char material. PRWPM emits complicated waste composed of cellulose, hemicellulose, lignin, and plastic from sealing film. The waste is produced from the recycled paper process of a mill plant located in central Taiwan. The source of WSO is the rejected organic waste from a cooking oil factory located in north Taiwan. PRWPM and WSO are suitable for use as fuels, but due to their high oxygen content, their use as commercial liquid fuels is not frequent, thus making deoxygenation and hydrogenation necessary. The temperature and pressure of SHLT were set at 523–643 K and 40–250 bar, respectively. The experimental conditions included solvent ratios of oil–water, temperature, reaction time, and ratios of solvent to PRWPM. The analysis results contained approximated components, heating values, elements, surface features, simulated distillations, product compositions, and recovery yields. The HHV of the product occurred at an oil–water ratio of 75:25, with a value of 38.04 MJ kg −1 . At an oil–water ratio of 25:75, the liquid oil-phase product of SHTL has the highest heating value 42.02 MJ kg −1 . Higher WSO content implies a lower heating value of the oil-phase product. The simulated distillation result of the oil-phase product with higher content of alcohol and alkanes obtained at the oil–water ratio of 25:75 is better than the other ratios. Here, the carbon number of the oil product is between C8–C36. The product conversion rate rises with an increase of the WSO ratio. It is proved that blending soybean oil with water can significantly enhance the quality of liquefied oil and the conversion rate of PRWPM. Therefore, the solid and liquid biomass wastes co-liquefaction to produce gas and liquid biofuels under SHLT are quite feasible.

Suggested Citation

  • Je-Lueng Shie & Wei-Sheng Yang & Yi-Ru Liau & Tian-Hui Liau & Hong-Ren Yang, 2021. "Subcritical Hydrothermal Co-Liquefaction of Process Rejects at a Wastepaper-Based Paper Mill with Waste Soybean Oil," Energies, MDPI, vol. 14(9), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2442-:d:543042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Zhe & Toor, Saqib Sohail & Rosendahl, Lasse & Yu, Donghong & Chen, Guanyi, 2015. "Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw," Energy, Elsevier, vol. 80(C), pages 284-292.
    2. Chia-Chi Chang & Syuan Teng & Min-Hao Yuan & Dar-Ren Ji & Ching-Yuan Chang & Yi-Hung Chen & Je-Lueng Shie & Chungfang Ho & Sz-Ying Tian & Cesar Augusto Andrade-Tacca & Do Van Manh & Min-Yi Tsai & Mei-, 2018. "Esterification of Jatropha Oil with Isopropanol via Ultrasonic Irradiation," Energies, MDPI, vol. 11(6), pages 1-15, June.
    3. Chia-Chi Chang & Manh Van Do & Wei-Li Hsu & Bo-Liang Liu & Ching-Yuan Chang & Yi-Hung Chen & Min-Hao Yuan & Cheng-Fang Lin & Chang-Ping Yu & Yen-Hau Chen & Je-Lueng Shie & Wan-Yi Wu & Chien-Hsien Lee , 2019. "A Case Study on the Electricity Generation Using a Micro Gas Turbine Fuelled by Biogas from a Sewage Treatment Plant," Energies, MDPI, vol. 12(12), pages 1-15, June.
    4. Brand, Steffen & Hardi, Flabianus & Kim, Jaehoon & Suh, Dong Jin, 2014. "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol," Energy, Elsevier, vol. 68(C), pages 420-427.
    5. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    6. Reddy, Harvind Kumar & Muppaneni, Tapaswy & Ponnusamy, Sundaravadivelnathan & Sudasinghe, Nilusha & Pegallapati, Ambica & Selvaratnam, Thinesh & Seger, Mark & Dungan, Barry & Nirmalakhandan, Nagamany , 2016. "Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp," Applied Energy, Elsevier, vol. 165(C), pages 943-951.
    7. Chia-Chi Chang & Yen-Hau Chen & Yi-Shiou Lin & Zang-Sei Hung & Min-Hao Yuan & Ching-Yuan Chang & Yuan-Shen Li & Je-Lueng Shie & Yi-Hung Chen & Yen-Chi Wang & Chun-Han Ko & Far-Ching Lin & Chungfang Ho, 2018. "A Pilot Plant Study on the Autoclaving of Food Wastes for Resource Recovery and Reutilization," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Benjamin H.Y. & Walmsley, Timothy G. & Atkins, Martin J. & Varbanov, Petar S. & Walmsley, Michael R.W., 2019. "A heat- and mass-integrated design of hydrothermal liquefaction process co-located with a Kraft pulp mill," Energy, Elsevier, vol. 189(C).
    2. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    3. Kandasamy, Sabariswaran & Zhang, Bo & He, Zhixia & Chen, Haitao & Feng, Huan & Wang, Qian & Wang, Bin & Ashokkumar, Veeramuthu & Siva, Subramanian & Bhuvanendran, Narayanamoorthy & Krishnamoorthi, M., 2020. "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, Elsevier, vol. 190(C).
    4. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    5. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    7. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    8. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    9. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
    10. Wang, Haoyu & Han, Xue & Zeng, Yimin & Xu, Chunbao Charles, 2023. "Development of a global kinetic model based on chemical compositions of lignocellulosic biomass for predicting product yields from hydrothermal liquefaction," Renewable Energy, Elsevier, vol. 215(C).
    11. Gundupalli, Marttin Paulraj & Bhattacharyya, Debraj, 2021. "Hydrothermal liquefaction of residues of Cocos nucifera (coir and pith) using subcritical water: Process optimization and product characterization," Energy, Elsevier, vol. 236(C).
    12. SundarRajan, P. & Gopinath, K.P. & Arun, J. & GracePavithra, K. & Adithya Joseph, A. & Manasa, S., 2021. "Insights into valuing the aqueous phase derived from hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Chen, Congjin & Zhu, Jingxian & Jia, Shuang & Mi, Shuai & Tong, Zhangfa & Li, Zhixia & Li, Mingfei & Zhang, Yanjuan & Hu, Yuhua & Huang, Zuqiang, 2018. "Effect of ethanol on Mulberry bark hydrothermal liquefaction and bio-oil chemical compositions," Energy, Elsevier, vol. 162(C), pages 460-475.
    14. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    15. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    16. Komeil Kohansal & Kamaldeep Sharma & Saqib Sohail Toor & Eliana Lozano Sanchez & Joscha Zimmermann & Lasse Aistrup Rosendahl & Thomas Helmer Pedersen, 2021. "Bio-Crude Production Improvement during Hydrothermal Liquefaction of Biopulp by Simultaneous Application of Alkali Catalysts and Aqueous Phase Recirculation," Energies, MDPI, vol. 14(15), pages 1-21, July.
    17. Daniele Castello & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Continuous Hydrothermal Liquefaction of Biomass: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-35, November.
    18. Lili Qian & Jun Ni & Zhiyang Xu & Bin Yu & Shuang Wang & Heng Gu & Dong Xiang, 2021. "Biocrude Production from Hydrothermal Liquefaction of Chlorella : Thermodynamic Modelling and Reactor Design," Energies, MDPI, vol. 14(20), pages 1-9, October.
    19. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    20. Mei Yin Ong & Nor-Insyirah Syahira Abdul Latif & Hui Yi Leong & Bello Salman & Pau Loke Show & Saifuddin Nomanbhay, 2019. "Characterization and Analysis of Malaysian Macroalgae Biomass as Potential Feedstock for Bio-Oil Production," Energies, MDPI, vol. 12(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2442-:d:543042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.