IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2420-d542316.html
   My bibliography  Save this article

A CFD-Based Parametric Thermal Performance Analysis of Supply Air Ventilated Windows

Author

Listed:
  • Shiva Najaf Khosravi

    (Department of Building Physics and Building Ecology, Vienna University of Technology, 1040 Vienna, Austria)

  • Ardeshir Mahdavi

    (Department of Building Physics and Building Ecology, Vienna University of Technology, 1040 Vienna, Austria)

Abstract

Ventilated windows have the potential to contribute to both indoor air quality and energy efficiency in cold climates. A typical ventilated window functions as a solar collector under inward air flow direction and incident solar radiation. The ventilated window is a modification of the multiple pane windows in which air is drawn in from outside and is heated through conduction, convection, and radiation in the cavity. In this study, a detailed parametric analysis was conducted to investigate the thermal performance of ventilated windows and their capacity to preheat ventilation air. High-resolution 3D steady RANS computational fluid dynamic (CFD) simulations were performed for six ventilated window geometries. Model results were compared with measurements. The following geometric characteristics were evaluated in detail: (i) The height of the window, (ii) the width of the cavity, (iii) the location of double-layered glazing, and (iv) the width of the supply air opening. The results suggested that taller cavities and a smaller cavity depth can provide higher incoming air temperature. Windows with inner double-layered glazing and a smaller width of supply air opening displayed a better thermal performance.

Suggested Citation

  • Shiva Najaf Khosravi & Ardeshir Mahdavi, 2021. "A CFD-Based Parametric Thermal Performance Analysis of Supply Air Ventilated Windows," Energies, MDPI, vol. 14(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2420-:d:542316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2420/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2420/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyung-joo Cho & Dong-woo Cho, 2018. "Solar Heat Gain Coefficient Analysis of a Slim-Type Double Skin Window System: Using an Experimental and a Simulation Method," Energies, MDPI, vol. 11(1), pages 1-17, January.
    2. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude," Applied Energy, Elsevier, vol. 146(C), pages 84-91.
    3. Jordi Parra & Alfredo Guardo & Eduard Egusquiza & Pere Alavedra, 2015. "Thermal Performance of Ventilated Double Skin Façades with Venetian Blinds," Energies, MDPI, vol. 8(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    3. Zhonghua Zhang & Lingjie Zeng & Huixian Shi & Gukun Yang & Zhenjiang Yu & Wenjun Yin & Jun Gao & Lina Wang & Yalei Zhang & Xuefei Zhou, 2021. "Dynamics and Numerical Simulation of Contaminant Diffusion for a Non-Flushing Ecological Toilet," Energies, MDPI, vol. 14(22), pages 1-22, November.
    4. Salem Zeiny & Yassine Cherif & Stephane Lassue, 2023. "Analysis of the Thermo-Aeraulic Behavior of a Heated Supply Air Window in Forced Convection: Numerical and Experimental Approaches," Energies, MDPI, vol. 16(7), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    2. Pourshab, Nasrin & Tehrani, Mehdi Dadkhah & Toghraie, Davood & Rostami, Sara, 2020. "Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings," Energy, Elsevier, vol. 200(C).
    3. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    4. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Integrated BIM-Parametric Workflow-Based Analysis of Daylight Improvement for Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(9), pages 1-29, May.
    5. Jiayu Li & Bohong Zheng & Xiao Chen & Yihua Zhou & Jifa Rao & Komi Bernard Bedra, 2020. "Research on Annual Thermal Environment of Non-Hvac Building Regulated by Window-to-Wall Ratio in a Chinese City (Chenzhou)," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    6. Hooman Mehdizadeh-Rad & Taimoor Ahmad Choudhry & Anne W. M. Ng & Zohreh Rajabi & Muhammad Farooq Rais & Asad Zia & Muhammad Atiq Ur Rehman Tariq, 2022. "An Energy Performance Evaluation of Commercially Available Window Glazing in Darwin’s Tropical Climate," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    7. Heangwoo Lee & Janghoo Seo, 2018. "Development of Window-Mounted Air Cap Roller Module," Energies, MDPI, vol. 11(7), pages 1-14, July.
    8. Zhang, Xiang & Saelens, Dirk & Roels, Staf, 2022. "Estimating dynamic solar gains from on-site measured data: An ARX modelling approach," Applied Energy, Elsevier, vol. 321(C).
    9. Acosta, Ignacio & Campano, Miguel Ángel & Molina, Juan Francisco, 2016. "Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces," Applied Energy, Elsevier, vol. 168(C), pages 493-506.
    10. Sun, Yanyi & Shanks, Katie & Baig, Hasan & Zhang, Wei & Hao, Xia & Li, Yongxue & He, Bo & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Zhang, Jingquan & Xie, Lingzhi & Mallick, Tapas & Wu, Yupe, 2018. "Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs," Applied Energy, Elsevier, vol. 231(C), pages 972-984.
    11. Kyung-joo Cho & Dong-woo Cho, 2018. "Solar Heat Gain Coefficient Analysis of a Slim-Type Double Skin Window System: Using an Experimental and a Simulation Method," Energies, MDPI, vol. 11(1), pages 1-17, January.
    12. Dwinanto Sukamto & Monica Siroux & Francois Gloriant, 2021. "Hot Box Investigations of a Ventilated Bioclimatic Wall for NZEB Building Façade," Energies, MDPI, vol. 14(5), pages 1-16, March.
    13. Jaroslav Košičan & Miguel Ángel Pardo & Silvia Vilčeková, 2020. "A Multicriteria Methodology to Select the Best Installation of Solar Thermal Power in a Family House," Energies, MDPI, vol. 13(5), pages 1-17, February.
    14. Roya Aeinehvand & Amiraslan Darvish & Abdollah Baghaei Daemei & Shima Barati & Asma Jamali & Vahid Malekpour Ravasjan, 2021. "Proposing Alternative Solutions to Enhance Natural Ventilation Rates in Residential Buildings in the Cfa Climate Zone of Rasht," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    15. Tao, Yao & Zhang, Haihua & Huang, Dongmei & Fan, Chuangang & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double skin façade with low-e glazing," Energy, Elsevier, vol. 229(C).
    16. Zhai, Yingni & Wang, Yi & Huang, Yanqiu & Meng, Xiaojing, 2019. "A multi-objective optimization methodology for window design considering energy consumption, thermal environment and visual performance," Renewable Energy, Elsevier, vol. 134(C), pages 1190-1199.
    17. Giacomo Chiesa & Andrea Acquaviva & Mario Grosso & Lorenzo Bottaccioli & Maurizio Floridia & Edoardo Pristeri & Edoardo Maria Sanna, 2019. "Parametric Optimization of Window-to-Wall Ratio for Passive Buildings Adopting A Scripting Methodology to Dynamic-Energy Simulation," Sustainability, MDPI, vol. 11(11), pages 1-30, May.
    18. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.
    19. Tuğba İnan & Tahsin Başaran & Aytunç Erek, 2017. "Experimental and Numerical Investigation of Forced Convection in a Double Skin Façade," Energies, MDPI, vol. 10(9), pages 1-15, September.
    20. Zhiqiang Wang & Qi Tian & Jie Jia, 2022. "The Convective Heat Transfer Performance and Structural Optimization of the Cavity in Energy-Saving Thermal Insulation Windows under Cold Air Penetration Condition," Energies, MDPI, vol. 15(7), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2420-:d:542316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.