IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1364-d111306.html
   My bibliography  Save this article

Experimental and Numerical Investigation of Forced Convection in a Double Skin Façade

Author

Listed:
  • Tuğba İnan

    (Department of Architecture, Niğde Ömer Halisdemir University, Niğde 51240, Turkey)

  • Tahsin Başaran

    (Department of Architecture, İzmir Institute of Technology, İzmir 35430, Turkey)

  • Aytunç Erek

    (Department of Mechanical Engineering, Dokuz Eylül University, İzmir 35397, Turkey)

Abstract

Flow and heat transfer of the air cavity between two glass façades designed in the box window type of double skin façade (DSF) was evaluated in a test room which was set up for measurements in the laboratory environment and analyzed under different working conditions by using a computational fluid dynamics tool. Using data from the experimental studies, the verification of the numerical studies was conducted and the air flow and heat transfer in the cavity between the two glass façades were examined numerically in detail. The depth to height of the cavity, the aspect ratio, was changed between 0.10 and 0.16, and was studied for three different flow velocities. Reynolds and average Nusselt numbers ranging from 28,000 to 56,500 and 134 to 272, respectively, were calculated and a non-dimensional correlation between Reynolds and Nusselt numbers was constructed to evaluate the heat transfer from the cavity (except inlet and outlet sections) air to the inside environment and it could be used the box window type of DSF applications having relatively short cavities.

Suggested Citation

  • Tuğba İnan & Tahsin Başaran & Aytunç Erek, 2017. "Experimental and Numerical Investigation of Forced Convection in a Double Skin Façade," Energies, MDPI, vol. 10(9), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1364-:d:111306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jordi Parra & Alfredo Guardo & Eduard Egusquiza & Pere Alavedra, 2015. "Thermal Performance of Ventilated Double Skin Façades with Venetian Blinds," Energies, MDPI, vol. 8(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yorgos Spanodimitriou & Giovanni Ciampi & Michelangelo Scorpio & Niloufar Mokhtari & Ainoor Teimoorzadeh & Roberta Laffi & Sergio Sibilio, 2022. "Passive Strategies for Building Retrofitting: Performances Analysis and Incentive Policies for the Iranian Scenario," Energies, MDPI, vol. 15(5), pages 1-22, February.
    2. Tao, Yao & Zhang, Haihua & Zhang, Lili & Zhang, Guomin & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double-skin façade in buildings," Renewable Energy, Elsevier, vol. 167(C), pages 184-198.
    3. Zhiqiang Wang & Qi Tian & Jie Jia, 2022. "The Convective Heat Transfer Performance and Structural Optimization of the Cavity in Energy-Saving Thermal Insulation Windows under Cold Air Penetration Condition," Energies, MDPI, vol. 15(7), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pourshab, Nasrin & Tehrani, Mehdi Dadkhah & Toghraie, Davood & Rostami, Sara, 2020. "Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings," Energy, Elsevier, vol. 200(C).
    2. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    3. Pau Fonseca i Casas & Antoni Fonseca i Casas & Nuria Garrido-Soriano & Alfonso Godoy & Wendys-Carolina Pujols & Jesus Garcia, 2017. "Solution Validation for a Double Façade Prototype," Energies, MDPI, vol. 10(12), pages 1-19, December.
    4. Abel Velasco & Sergi Jiménez García & Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza, 2017. "Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates," Energies, MDPI, vol. 10(11), pages 1-15, November.
    5. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Chong Shen & Xianting Li, 2017. "Potential of Utilizing Different Natural Cooling Sources to Reduce the Building Cooling Load and Cooling Energy Consumption: A Case Study in Urumqi," Energies, MDPI, vol. 10(3), pages 1-17, March.
    7. Heangwoo Lee & Janghoo Seo, 2018. "Development of Window-Mounted Air Cap Roller Module," Energies, MDPI, vol. 11(7), pages 1-14, July.
    8. Shiva Najaf Khosravi & Ardeshir Mahdavi, 2021. "A CFD-Based Parametric Thermal Performance Analysis of Supply Air Ventilated Windows," Energies, MDPI, vol. 14(9), pages 1-20, April.
    9. Kyung-joo Cho & Dong-woo Cho, 2018. "Solar Heat Gain Coefficient Analysis of a Slim-Type Double Skin Window System: Using an Experimental and a Simulation Method," Energies, MDPI, vol. 11(1), pages 1-17, January.
    10. Dwinanto Sukamto & Monica Siroux & Francois Gloriant, 2021. "Hot Box Investigations of a Ventilated Bioclimatic Wall for NZEB Building Façade," Energies, MDPI, vol. 14(5), pages 1-16, March.
    11. Jaroslav Košičan & Miguel Ángel Pardo & Silvia Vilčeková, 2020. "A Multicriteria Methodology to Select the Best Installation of Solar Thermal Power in a Family House," Energies, MDPI, vol. 13(5), pages 1-17, February.
    12. Roya Aeinehvand & Amiraslan Darvish & Abdollah Baghaei Daemei & Shima Barati & Asma Jamali & Vahid Malekpour Ravasjan, 2021. "Proposing Alternative Solutions to Enhance Natural Ventilation Rates in Residential Buildings in the Cfa Climate Zone of Rasht," Sustainability, MDPI, vol. 13(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1364-:d:111306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.