IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1943-d528254.html
   My bibliography  Save this article

Analysis and Design of a Multi-Port DC-DC Converter for Interfacing PV Systems

Author

Listed:
  • Bader N. Alajmi

    (Electrical Engineering Technology Department, College of Technological Studies, Doha 35001, Kuwait)

  • Mostafa I. Marei

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11769, Egypt)

  • Ibrahim Abdelsalam

    (Electrical and Control Department, College of Engineering & Technology, Arab Academy for Science, Technology & Maritime Transport, Cairo 2033, Egypt)

  • Mohamed F. AlHajri

    (Electrical Engineering Technology Department, College of Technological Studies, Doha 35001, Kuwait)

Abstract

A high-frequency multi-port (HFMP) direct current (DC) to DC converter is presented. The proposed HFMP is utilized to interface a photovoltaic (PV) system. The presented HFMP is compact and can perform maximum power point tracking. It consists of a high-frequency transformer with many identical input windings and one output winding. Each input winding is connected to a PV module through an H-bridge inverter, and the maximum PV power is tracked using the perturb and observe (P&O) technique. The output winding is connected to a DC bus through a rectifier. The detailed analysis and operation of the proposed HFMP DC-DC converter are presented. Extensive numerical simulations are conducted, using power system computer aided design (PSCAD)/electromagnetic transients including DC (EMTDC) software, to evaluate the operation and dynamic behavior of the proposed PV interfacing scheme. In addition, an experimental setup is built to verify the performance of the HFMP DC-DC converter.

Suggested Citation

  • Bader N. Alajmi & Mostafa I. Marei & Ibrahim Abdelsalam & Mohamed F. AlHajri, 2021. "Analysis and Design of a Multi-Port DC-DC Converter for Interfacing PV Systems," Energies, MDPI, vol. 14(7), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1943-:d:528254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hwang, Duck-Hwan & Lee, Jung-Yong & Cho, Younghoon, 2018. "Single-phase single-stage dual-buck photovoltaic inverter with active power decoupling strategy," Renewable Energy, Elsevier, vol. 126(C), pages 454-464.
    2. Ke Guo & Qiang Liu & Xinze Xi & Mingxuan Mao & Yihao Wan & Hao Wu, 2020. "Coordinated Control Strategy of a Combined Converter in a Photovoltaic DC Boost Collection System under Partial Shading Conditions," Energies, MDPI, vol. 13(2), pages 1-18, January.
    3. Luigi Costanzo & Massimo Vitelli, 2019. "A Novel MPPT Technique for Single Stage Grid-Connected PV Systems: T4S," Energies, MDPI, vol. 12(23), pages 1-13, November.
    4. Qi, Jun & Zhang, Youbing & Chen, Yi, 2014. "Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions," Renewable Energy, Elsevier, vol. 66(C), pages 337-345.
    5. Madasamy Periyanayagam & Suresh Kumar V & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Yusuff Adedayo, 2020. "A Modified High Voltage Gain Quasi-Impedance Source Coupled Inductor Multilevel Inverter for Photovoltaic Application," Energies, MDPI, vol. 13(4), pages 1-31, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    2. Paula Andrea Ortiz Valencia & Carlos Andres Ramos-Paja, 2015. "Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 8(11), pages 1-25, November.
    3. Guerrero-Rodríguez, N.F. & Rey-Boué, Alexis B. & Herrero-de Lucas, Luis C. & Martinez-Rodrigo, Fernando, 2015. "Control and synchronization algorithms for a grid-connected photovoltaic system under harmonic distortions, frequency variations and unbalances," Renewable Energy, Elsevier, vol. 80(C), pages 380-395.
    4. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    5. Moacyr A. G. de Brito & Victor A. Prado & Edson A. Batista & Marcos G. Alves & Carlos A. Canesin, 2021. "Design Procedure to Convert a Maximum Power Point Tracking Algorithm into a Loop Control System," Energies, MDPI, vol. 14(15), pages 1-17, July.
    6. Tabanjat, Abdulkader & Becherif, Mohamed & Hissel, Daniel, 2015. "Reconfiguration solution for shaded PV panels using switching control," Renewable Energy, Elsevier, vol. 82(C), pages 4-13.
    7. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    8. Madhu Andela & Ahmmadhussain Shaik & Saicharan Beemagoni & Vishal Kurimilla & Rajagopal Veramalla & Amritha Kodakkal & Surender Reddy Salkuti, 2022. "Solar Photovoltaic System-Based Reduced Switch Multilevel Inverter for Improved Power Quality," Clean Technol., MDPI, vol. 4(1), pages 1-13, January.
    9. García-Triviño, Pablo & Sarrias-Mena, Raúl & García-Vázquez, Carlos A. & Leva, Sonia & Fernández-Ramírez, Luis M., 2023. "Optimal online battery power control of grid-connected energy-stored quasi-impedance source inverter with PV system," Applied Energy, Elsevier, vol. 329(C).
    10. Subramanian Vasantharaj & Vairavasundaram Indragandhi & Vairavasundaram Subramaniyaswamy & Yuvaraja Teekaraman & Ramya Kuppusamy & Srete Nikolovski, 2021. "Efficient Control of DC Microgrid with Hybrid PV—Fuel Cell and Energy Storage Systems," Energies, MDPI, vol. 14(11), pages 1-18, June.
    11. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.
    12. Qamar Navid & Ahmed Hassan & Abbas Ahmad Fardoun & Rashad Ramzan & Abdulrahman Alraeesi, 2021. "Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    13. Miaomiao Ma & Xiangjie Liu & Kwang Y. Lee, 2020. "Maximum Power Point Tracking and Voltage Regulation of Two-Stage Grid-Tied PV System Based on Model Predictive Control," Energies, MDPI, vol. 13(6), pages 1-16, March.
    14. Polo, J. & Fernandez-Neira, W.G. & Alonso-García, M.C., 2017. "On the use of reference modules as irradiance sensor for monitoring and modelling rooftop PV systems," Renewable Energy, Elsevier, vol. 106(C), pages 186-191.
    15. de Oliveira-Assis, Lais & Soares-Ramos, Emanuel P.P. & Sarrias-Mena, Raúl & García-Triviño, Pablo & González-Rivera, Enrique & Sánchez-Sainz, Higinio & Llorens-Iborra, Francisco & Fernández-Ramírez, L, 2022. "Simplified model of battery energy-stored quasi-Z-source inverter-based photovoltaic power plant with Twofold energy management system," Energy, Elsevier, vol. 244(PA).
    16. M. Yusop, A. & Mohamed, R. & Mohamed, A., 2016. "Inverse dynamic analysis type of MPPT control strategy in a thermoelectric-solar hybrid energy harvesting system," Renewable Energy, Elsevier, vol. 86(C), pages 682-692.
    17. Dizqah, Arash M. & Maheri, Alireza & Busawon, Krishna, 2014. "An accurate method for the PV model identification based on a genetic algorithm and the interior-point method," Renewable Energy, Elsevier, vol. 72(C), pages 212-222.
    18. Kommoju Naga Durga Veera Sai Eswar & Mohan Arun Noyal Doss & Pradeep Vishnuram & Ali Selim & Mohit Bajaj & Hossam Kotb & Salah Kamel, 2022. "Comprehensive Study on Reduced DC Source Count: Multilevel Inverters and Its Design Topologies," Energies, MDPI, vol. 16(1), pages 1-25, December.
    19. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "A novel voltage-current characteristic based global maximum power point tracking algorithm in photovoltaic systems," Energy, Elsevier, vol. 112(C), pages 153-163.
    20. Sergio Ignacio Serna-Garcés & Juan David Bastidas-Rodríguez & Carlos Andrés Ramos-Paja, 2015. "Reconfiguration of Urban Photovoltaic Arrays Using Commercial Devices," Energies, MDPI, vol. 9(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1943-:d:528254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.