IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v112y2016icp153-163.html
   My bibliography  Save this article

A novel voltage-current characteristic based global maximum power point tracking algorithm in photovoltaic systems

Author

Listed:
  • Başoğlu, Mustafa Engin
  • Çakır, Bekir

Abstract

This paper presents a new global maximum power point tracking algorithm based on the voltage-current characteristic curves of solar panels. This algorithm consists of two sub algorithms that are used in uniform irradiance and partial shading conditions. First, voltages of the bypass diodes are measured for checking the partial shading condition. In the sub algorithm developed for uniform irradiance conditions, convergence time is reduced by suggesting a new approach based on the ratio of current of maximum power point and short circuit current. With the help of this ratio, proper initialization of duty ratio is aimed. On the other hand, a novel approach is introduced by employing average equivalent resistance of solar panel for the purpose of global maximum power point tracking in partial shading conditions. In this approach, characteristics of solar panels are used. So as to validate the performance of the proposed algorithms, a single ended primary inductance converter is modelled in MATLAB/Simulink. Simulation results show that proposed algorithm finds the global maximum power point in partial shading. It operates faster than P&O in uniform irradiance condition. It is worth noting that sub algorithm developed for partial shading can be used in uniform irradiance condition. It performs better than P&O algorithm in this condition.

Suggested Citation

  • Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "A novel voltage-current characteristic based global maximum power point tracking algorithm in photovoltaic systems," Energy, Elsevier, vol. 112(C), pages 153-163.
  • Handle: RePEc:eee:energy:v:112:y:2016:i:c:p:153-163
    DOI: 10.1016/j.energy.2016.05.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216307496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daraban, Stefan & Petreus, Dorin & Morel, Cristina, 2014. "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, Elsevier, vol. 74(C), pages 374-388.
    2. Qi, Jun & Zhang, Youbing & Chen, Yi, 2014. "Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions," Renewable Energy, Elsevier, vol. 66(C), pages 337-345.
    3. Jiang, Lian Lian & Nayanasiri, D.R. & Maskell, Douglas L. & Vilathgamuwa, D.M., 2015. "A hybrid maximum power point tracking for partially shaded photovoltaic systems in the tropics," Renewable Energy, Elsevier, vol. 76(C), pages 53-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nahar, Afroza & Hasanuzzaman, M. & Rahim, N.A. & Parvin, S., 2019. "Numerical investigation on the effect of different parameters in enhancing heat transfer performance of photovoltaic thermal systems," Renewable Energy, Elsevier, vol. 132(C), pages 284-295.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    2. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    3. M. Yusop, A. & Mohamed, R. & Mohamed, A., 2016. "Inverse dynamic analysis type of MPPT control strategy in a thermoelectric-solar hybrid energy harvesting system," Renewable Energy, Elsevier, vol. 86(C), pages 682-692.
    4. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    5. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    6. Zhang, Xiaoshun & Li, Shengnan & He, Tingyi & Yang, Bo & Yu, Tao & Li, Haofei & Jiang, Lin & Sun, Liming, 2019. "Memetic reinforcement learning based maximum power point tracking design for PV systems under partial shading condition," Energy, Elsevier, vol. 174(C), pages 1079-1090.
    7. Khaled Bataineh & Naser Eid, 2018. "A Hybrid Maximum Power Point Tracking Method for Photovoltaic Systems for Dynamic Weather Conditions," Resources, MDPI, vol. 7(4), pages 1-16, November.
    8. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Bader N. Alajmi & Mostafa I. Marei & Ibrahim Abdelsalam & Mohamed F. AlHajri, 2021. "Analysis and Design of a Multi-Port DC-DC Converter for Interfacing PV Systems," Energies, MDPI, vol. 14(7), pages 1-17, April.
    10. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    11. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    12. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    13. Paula Andrea Ortiz Valencia & Carlos Andres Ramos-Paja, 2015. "Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 8(11), pages 1-25, November.
    14. Chatterjee, Shantanu & Kumar, Prashant & Chatterjee, Saibal, 2018. "A techno-commercial review on grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2371-2397.
    15. Guerrero-Rodríguez, N.F. & Rey-Boué, Alexis B. & Herrero-de Lucas, Luis C. & Martinez-Rodrigo, Fernando, 2015. "Control and synchronization algorithms for a grid-connected photovoltaic system under harmonic distortions, frequency variations and unbalances," Renewable Energy, Elsevier, vol. 80(C), pages 380-395.
    16. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    17. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    18. Yang, Bo & Wu, Shaocong & Li, Qiang & Yan, Yingjie & Li, Danyang & Luo, Enbo & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Shu, Hongchun & Li, Zilin & Wang, Jingbo, 2023. "Jellyfish search algorithm based optimal thermoelectric generation array reconfiguration under non-uniform temperature distribution condition," Renewable Energy, Elsevier, vol. 204(C), pages 197-217.
    19. G, Dileep. & Singh, S.N., 2017. "Selection of non-isolated DC-DC converters for solar photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1230-1247.
    20. Fathabadi, Hassan, 2016. "Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking," Energy, Elsevier, vol. 94(C), pages 466-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:112:y:2016:i:c:p:153-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.