IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v76y2017icp1230-1247.html
   My bibliography  Save this article

Selection of non-isolated DC-DC converters for solar photovoltaic system

Author

Listed:
  • G, Dileep.
  • Singh, S.N.

Abstract

Concerns over environment and increased demand of energy have led the world to think about alternate energy sources such as wind, hydro, solar and fuel cells. Out of these, photovoltaic (PV) power generation systems have become increasingly important all over the world due its availability, cleanness, low maintenance cost and inexhaustible nature. But power produced by the photovoltaic system is stochastic in nature due to the variation of solar irradiation and cell temperature throughout the day. In order to track the varying power, a DC-DC converter with maximum power point tracker (MPPT) is used. Different MPPT algorithms have been proposed for tracking peak power from the PV panel. Selection of adequate DC-DC converter is also an important factor since it has an influence on overall performance of the PV system. This paper presents a comparative study on the characteristics of different non-isolated DC-DC converters and highlights the various research works that has been done on DC-DC converters based MPPT PV system. Study shows that selection of converter also has an impact on the overall performance of the PV system. Based on the survey and comparative study, selection criteria to choose DC-DC converter for PV system is described in this paper.

Suggested Citation

  • G, Dileep. & Singh, S.N., 2017. "Selection of non-isolated DC-DC converters for solar photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1230-1247.
  • Handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:1230-1247
    DOI: 10.1016/j.rser.2017.03.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117304653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.03.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daraban, Stefan & Petreus, Dorin & Morel, Cristina, 2014. "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, Elsevier, vol. 74(C), pages 374-388.
    2. Pernía, Alberto M. & Arias, Jorge & Prieto, Miguel J. & Martínez, Juan Ángel, 2009. "A modular strategy for isolated photovoltaic systems based on microcontroller," Renewable Energy, Elsevier, vol. 34(7), pages 1825-1832.
    3. Lin, Chia-Hung & Huang, Cong-Hui & Du, Yi-Chun & Chen, Jian-Liung, 2011. "Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method," Applied Energy, Elsevier, vol. 88(12), pages 4840-4847.
    4. Ishaque, Kashif & Salam, Zainal & Lauss, George, 2014. "The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions," Applied Energy, Elsevier, vol. 119(C), pages 228-236.
    5. Sivakumar, P. & Abdul Kader, Abdullah & Kaliavaradhan, Yogeshraj & Arutchelvi, M., 2015. "Analysis and enhancement of PV efficiency with incremental conductance MPPT technique under non-linear loading conditions," Renewable Energy, Elsevier, vol. 81(C), pages 543-550.
    6. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussain Bassi & Zainal Salam & Mohd Zulkifli Ramli & Hatem Sindi & Muhyaddin Rawa, 2019. "Hardware Approach to Mitigate the Effects of Module Mismatch in a Grid-connected Photovoltaic System: A Review," Energies, MDPI, vol. 12(22), pages 1-25, November.
    2. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    4. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.
    5. Aatabe, Mohamed & El Guezar, Fatima & Vargas, Alessandro N. & Bouzahir, Hassane, 2021. "A novel stochastic maximum power point tracking control for off-grid standalone photovoltaic systems with unpredictable load demand," Energy, Elsevier, vol. 235(C).
    6. Ramli, Mohd Zulkifli & Salam, Zainal, 2019. "Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading," Renewable Energy, Elsevier, vol. 139(C), pages 1336-1354.
    7. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Van De Sande, Wieland & Ravyts, Simon & Daenen, Michael & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2019. "Modeling and validation of a DC/DC power converter for building energy simulations: Application to BIPV systems," Applied Energy, Elsevier, vol. 240(C), pages 646-665.
    8. Reshma Gopi, R. & Sreejith, S., 2018. "Converter topologies in photovoltaic applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1-14.
    9. Muhannad Alaraj & Anirudh Dube & Ibrahim Alsaidan & Mohammad Rizwan & Majid Jamil, 2021. "Design and Development of a Proficient Converter for Solar Photovoltaic Based Sustainable Power Generating System," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    10. Salem, Mohamed & Jusoh, Awang & Idris, N. Rumzi N. & Das, Himadry Shekhar & Alhamrouni, Ibrahim, 2018. "Resonant power converters with respect to passive storage (LC) elements and control techniques – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 504-520.
    11. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandro Ortiz & Efrain Mendez & Israel Macias & Arturo Molina, 2022. "Earthquake Algorithm-Based Voltage Referenced MPPT Implementation through a Standardized Validation Frame," Energies, MDPI, vol. 15(23), pages 1-24, November.
    2. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    3. Li, Qiyu & Zhao, Shengdun & Wang, Mengqi & Zou, Zhongyue & Wang, Bin & Chen, Qixu, 2017. "An improved perturbation and observation maximum power point tracking algorithm based on a PV module four-parameter model for higher efficiency," Applied Energy, Elsevier, vol. 195(C), pages 523-537.
    4. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    5. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    6. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    7. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    8. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    9. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    10. Li, Shaowu, 2016. "Linear equivalent models at the maximum power point based on variable weather parameters for photovoltaic cell," Applied Energy, Elsevier, vol. 182(C), pages 94-104.
    11. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.
    12. Moacyr A. G. de Brito & Victor A. Prado & Edson A. Batista & Marcos G. Alves & Carlos A. Canesin, 2021. "Design Procedure to Convert a Maximum Power Point Tracking Algorithm into a Loop Control System," Energies, MDPI, vol. 14(15), pages 1-17, July.
    13. Marco Balato & Carlo Petrarca, 2020. "The Impact of Reconfiguration on the Energy Performance of the Distributed Maximum Power Point Tracking Approach in PV Plants," Energies, MDPI, vol. 13(6), pages 1-19, March.
    14. Ahmed Ismail M. Ali & Zuhair Muhammed Alaas & Mahmoud A. Sayed & Abdulaziz Almalaq & Anouar Farah & Mohamed A. Mohamed, 2022. "An Efficient MPPT Technique-Based Single-Stage Incremental Conductance for Integrated PV Systems Considering Flyback Central-Type PV Inverter," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    15. Sidra Mumtaz & Saghir Ahmad & Laiq Khan & Saima Ali & Tariq Kamal & Syed Zulqadar Hassan, 2018. "Adaptive Feedback Linearization Based NeuroFuzzy Maximum Power Point Tracking for a Photovoltaic System," Energies, MDPI, vol. 11(3), pages 1-15, March.
    16. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    17. Hong, Ying-Yi & Beltran, Angelo A. & Paglinawan, Arnold C., 2018. "A robust design of maximum power point tracking using Taguchi method for stand-alone PV system," Applied Energy, Elsevier, vol. 211(C), pages 50-63.
    18. Ahmed, Jubaer & Salam, Zainal, 2015. "A critical evaluation on maximum power point tracking methods for partial shading in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 933-953.
    19. Zhou, Xiaoyan & Zhang, Ying & Ma, Xun & Li, Guoliang & Wang, Yunfeng & Hu, Chengzhi & Liang, Junyu & Li, Ming, 2022. "Performance characteristics of photovoltaic cold storage under composite control of maximum power tracking and constant voltage per frequency," Applied Energy, Elsevier, vol. 305(C).
    20. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:1230-1247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.