IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1281-d506308.html
   My bibliography  Save this article

Hydroelectric Plants and Dams as Industrial Heritage in the Context of Nature-Culture Interrelation: An Overview of Examples in Turkey

Author

Listed:
  • Nurdan Kuban

    (Department of Architecture, Kocaeli University, İzmit 41300, Kocaeli, Turkey)

Abstract

The article investigates nature–culture interrelation over the case studies of hydroelectric plants of the 20th century. In many cases, construction of these structures has evidently resulted in irreversible changes in natural and cultural environments. However, they have also supplied energy for the industrialization of civilizations. After approximately 100 years of existence, it is crucial to determine the future of these hydroelectric facilities, which are artifacts of industrial heritage approaching the end of their productive life spans. The article proposes an analytical approach aiming to sustain the integrity of nature and culture in the conservation of hydroelectric plants, presenting these energy facilities as cultural properties of industrial heritage, and discussing the impact of hydroelectric dams on natural and cultural environments, along with the effects of nature in the deterioration of these structures in order to pave the way to an optimized and sustainable future for the heritage of energy.

Suggested Citation

  • Nurdan Kuban, 2021. "Hydroelectric Plants and Dams as Industrial Heritage in the Context of Nature-Culture Interrelation: An Overview of Examples in Turkey," Energies, MDPI, vol. 14(5), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1281-:d:506308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Moridi & J. Yazdi, 2017. "Sediment Flushing of Reservoirs under Environmental Considerations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1899-1914, April.
    2. Suwal, Naresh & Huang, Xianfeng & Kuriqi, Alban & Chen, Yingqin & Pandey, Kamal Prasad & Bhattarai, Khem Prasad, 2020. "Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes," Renewable Energy, Elsevier, vol. 158(C), pages 453-464.
    3. Naresh Suwal & Alban Kuriqi & Xianfeng Huang & João Delgado & Dariusz Młyński & Andrzej Walega, 2020. "Environmental Flows Assessment in Nepal: The Case of Kaligandaki River," Sustainability, MDPI, vol. 12(21), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Wang & Qiya Wang & Caiqing Zhang, 2021. "Research on the Optimal Operation of a Novel Renewable Multi-Energy Complementary System in Rural Areas," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    2. Adán Acosta-Banda & Verónica Aguilar-Esteva & Miguel Patiño Ortiz & Julián Patiño Ortiz, 2021. "Construction and Validity of an Instrument to Evaluate Renewable Energies and Energy Sustainability Perceptions for Social Consciousness," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    3. Ren, Siyue & Feng, Xiao, 2021. "Emergy evaluation of ladder hydropower generation systems in the middle and lower reaches of the Lancang River," Renewable Energy, Elsevier, vol. 169(C), pages 1038-1050.
    4. Ying, Zhou & Xin-gang, Zhao, 2021. "The impact of Renewable Portfolio Standards on carbon emission trading under the background of China’s electricity marketization reform," Energy, Elsevier, vol. 226(C).
    5. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    6. Gokmen Ceribasi & Ahmet Iyad Ceyhunlu & Andrzej Wałęga & Dariusz Młyński, 2022. "Investigation of the Effect of Climate Change on Energy Produced by Hydroelectric Power Plants (HEPPs) by Trend Analysis Method: A Case Study for Dogancay I–II HEPPs," Energies, MDPI, vol. 15(7), pages 1-17, March.
    7. Shaokun He & Lei Gu & Jing Tian & Lele Deng & Jiabo Yin & Zhen Liao & Ziyue Zeng & Youjiang Shen & Yu Hui, 2021. "Machine Learning Improvement of Streamflow Simulation by Utilizing Remote Sensing Data and Potential Application in Guiding Reservoir Operation," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    8. Hatamkhani, Amir & Moridi, Ali & Haghighi, Ali Torabi, 2023. "Incorporating ecosystem services value into the optimal development of hydropower projects," Renewable Energy, Elsevier, vol. 203(C), pages 495-505.
    9. Naresh Suwal & Alban Kuriqi & Xianfeng Huang & João Delgado & Dariusz Młyński & Andrzej Walega, 2020. "Environmental Flows Assessment in Nepal: The Case of Kaligandaki River," Sustainability, MDPI, vol. 12(21), pages 1-23, October.
    10. Mateusz Hämmerling & Joanna Kocięcka & Stanisław Zaborowski, 2021. "AHP as a Useful Tool in the Assessment of the Technical Condition of Hydrotechnical Constructions," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    11. Wang, Shuping & Tan, Qian & Zhang, Tianyuan & Zhang, Tong, 2022. "Water management policy analysis: Insight from a calibration-based inexact programming method," Agricultural Water Management, Elsevier, vol. 269(C).
    12. Mahdi Sedighkia & Asghar Abdoli & Bithin Datta, 2021. "Optimizing monthly ecological flow regime by a coupled fuzzy physical habitat simulation–genetic algorithm method," Environment Systems and Decisions, Springer, vol. 41(3), pages 425-436, September.
    13. Lei, Liuwei & Li, Feng & Kheav, Kimleng & Jiang, Wei & Luo, Xingqi & Patelli, Edoardo & Xu, Beibei & Chen, Diyi, 2021. "A start-up optimization strategy of a hydroelectric generating system: From a symmetrical structure to asymmetric structure on diversion pipes," Renewable Energy, Elsevier, vol. 180(C), pages 1148-1165.
    14. Lian Xue & Mohammad Haseeb & Haider Mahmood & Tarek Tawfik Yousef Alkhateeb & Muntasir Murshed, 2021. "Renewable Energy Use and Ecological Footprints Mitigation: Evidence from Selected South Asian Economies," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    15. Kong, Hui & Li, Zheng & Yu, Zhufeng & Zhang, Jun & Wang, Hongsheng & Wang, Jian & Gao, Dan, 2021. "Environmental and economic multi-objective optimization of comprehensive energy industry: A case study," Energy, Elsevier, vol. 237(C).
    16. Liu, Hui & Yang, Rui & Wang, Tiantian & Zhang, Lei, 2021. "A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections," Renewable Energy, Elsevier, vol. 165(P1), pages 573-594.
    17. Iram Parvez & Jianjian Shen & Ishitaq Hassan & Nannan Zhang, 2021. "Generation of Hydro Energy by Using Data Mining Algorithm for Cascaded Hydropower Plant," Energies, MDPI, vol. 14(2), pages 1-28, January.
    18. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    19. Lee, Chien-Chiang & Ranjbar, Omid & Lee, Chi-Chuan, 2021. "Testing the persistence of shocks on renewable energy consumption: Evidence from a quantile unit-root test with smooth breaks," Energy, Elsevier, vol. 215(PB).
    20. Kou, Yu & Bie, Zhaohong & Li, Gengfeng & Liu, Fan & Jiang, Jiangfeng, 2021. "Reliability evaluation of multi-agent integrated energy systems with fully distributed communication," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1281-:d:506308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.