IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1217-d504692.html
   My bibliography  Save this article

Determinants of Decarbonisation in the Transformation of the Energy Sector: The Case of Poland

Author

Listed:
  • Magdalena Wójcik-Jurkiewicz

    (Department of Accounting, Institute of Management, College of Management Sciences and Quality, Cracow University of Economics, 31-510 Kraków, Poland)

  • Marzena Czarnecka

    (Department of Law and Insurance, College of Finance, University of Economics Katowice, 40-287 Katowice, Poland)

  • Grzegorz Kinelski

    (Department of Management, WSB University, 41-300 Dąbrowa Górnicza, Poland)

  • Beata Sadowska

    (Department of Accounting, Faculty of Economics and Management, University of Szczecin, 70-453 Szczecin, Poland)

  • Katarzyna Bilińska-Reformat

    (Department of Marketing Management and Tourism, College of Management, University of Economics Katowice, 40-287 Katowice, Poland)

Abstract

This paper aims to identify the determinants of the decarbonisation processes in Poland within the scope of energy transformation. The purpose of the study is to identify how the public perceives decarbonisation determinants in order to develop a sustainable energy strategy for Poland. The transition of the energy market to low-carbon technology is a policy challenge. Governments must implement policies that are environmentally friendly, cost-effective, but, most of all, socially acceptable. Social acceptance risk plays a significant role in Poland, influencing the decarbonisation process. In Poland’s case, the coal share is decreasing, but it is still the most important fuel for electricity production. This process of decarbonisation is a fundamental influence on the transformation of the energy sector in Poland. The social perception of solutions that can be applied was examined. The Polish natural environment is poisoned. Poles suffer from diseases related to the burning of coal for energy production. Societal awareness, how people perceive the government’s actions, and what they expect in this regard is crucial.

Suggested Citation

  • Magdalena Wójcik-Jurkiewicz & Marzena Czarnecka & Grzegorz Kinelski & Beata Sadowska & Katarzyna Bilińska-Reformat, 2021. "Determinants of Decarbonisation in the Transformation of the Energy Sector: The Case of Poland," Energies, MDPI, vol. 14(5), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1217-:d:504692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Victoria & Kun Zhu & Tom Brown & Gorm B. Andresen & Martin Greiner, 2020. "Early decarbonisation of the European energy system pays off," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Hübler, Michael & Löschel, Andreas, 2013. "The EU Decarbonisation Roadmap 2050—What way to walk?," Energy Policy, Elsevier, vol. 55(C), pages 190-207.
    3. Blyth, William & Bunn, Derek & Chronopoulos, Michail & Munoz, Jose, 2014. "Systematic Analysis of the Evolution of Electricity and Carbon Markets under Deep Decarbonisation," Discussion Papers 2014/39, Norwegian School of Economics, Department of Business and Management Science.
    4. Elkhan Richard Sadik-Zada, 2020. "Distributional Bargaining and the Speed of Structural Change in the Petroleum Exporting Labor Surplus Economies," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 32(1), pages 51-98, January.
    5. Spencer, Thomas & Pierfederici, Roberta & Sartor, Oliver & Berghmans, Nicolas & Samadi, Sascha & Fischedick, Manfred & Knoop, Katharina & Pye, Steve & Criqui, Patrick & Mathy, Sandrine & Capros, Pante, 2017. "Tracking sectoral progress in the deep decarbonisation of energy systems in Europe," Energy Policy, Elsevier, vol. 110(C), pages 509-517.
    6. Sadik-Zada, Elkhan Richard & Gatto, Andrea, 2021. "The puzzle of greenhouse gas footprints of oil abundance," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    7. Grzegorz Zimon, 2019. "An Assessment of the Strategy of Working Capital Management in Polish Energy Companies," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 552-556.
    8. Thomas Hoppe & Gerdien De Vries, 2018. "Social Innovation and the Energy Transition," Sustainability, MDPI, vol. 11(1), pages 1-13, December.
    9. Max Åhman & Lars J. Nilsson & Bengt Johansson, 2017. "Global climate policy and deep decarbonization of energy-intensive industries," Climate Policy, Taylor & Francis Journals, vol. 17(5), pages 634-649, July.
    10. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    11. Oscar Svensson & Jamil Khan & Roger Hildingsson, 2020. "Studying Industrial Decarbonisation: Developing an Interdisciplinary Understanding of the Conditions for Transformation in Energy-Intensive Natural Resource-Based Industry," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    12. Anastasios Tsakalidis & Konstantinos Gkoumas & Ferenc Pekár, 2020. "Digital Transformation Supporting Transport Decarbonisation: Technological Developments in EU-Funded Research and Innovation," Sustainability, MDPI, vol. 12(9), pages 1-13, May.
    13. Nino Antadze & Frances R. Westley, 2012. "Impact Metrics for Social Innovation: Barriers or Bridges to Radical Change?," Journal of Social Entrepreneurship, Taylor & Francis Journals, vol. 3(2), pages 133-150, October.
    14. Robert Olszewski & Piotr Pałka & Agnieszka Wendland & Jacek Kamiński, 2019. "A Multi-Agent Social Gamification Model to Guide Sustainable Urban Photovoltaic Panels Installation Policies," Energies, MDPI, vol. 12(15), pages 1-27, August.
    15. Kiuila, Olga, 2018. "Decarbonisation perspectives for the Polish economy," Energy Policy, Elsevier, vol. 118(C), pages 69-76.
    16. Piotr W. Saługa & Paweł Grzesiak & Jacek Kamiński, 2020. "Valuation of Decision Flexibility and Strategic Value in Coal Gasification Projects with the Option-To-Switch between Different Outputs," Energies, MDPI, vol. 13(11), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Ciołek & Izabela Emerling & Katarzyna Olejko & Beata Sadowska & Magdalena Wójcik-Jurkiewicz, 2022. "Assumptions of the Energy Policy of the Country versus Investment Outlays Related to the Purchase of Alternative Fuels: Poland as a Case Study," Energies, MDPI, vol. 15(5), pages 1-18, March.
    2. Julia Maria Wittmayer & Tessa de Geus & Bonno Pel & F. Avelino & Sabine Hielscher & Thomas Hoppe & Marie Susan Mühlemeier & Agata Stasik & Sem Oxenaar & Karoline K.S. Rogge & Vivian Visser & Esther Ma, 2020. "Beyond instrumentalism: Broadening the understanding of social innovation in socio-technical energy systems," ULB Institutional Repository 2013/312323, ULB -- Universite Libre de Bruxelles.
    3. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein, 2020. "Drivers of CO 2 -Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses," Energies, MDPI, vol. 13(15), pages 1-24, August.
    4. Grzegorz Lew & Beata Sadowska & Katarzyna Chudy-Laskowska & Grzegorz Zimon & Magdalena Wójcik-Jurkiewicz, 2021. "Influence of Photovoltaic Development on Decarbonization of Power Generation—Example of Poland," Energies, MDPI, vol. 14(22), pages 1-20, November.
    5. Suomalainen, Kiti & Wen, Le & Sheng, Mingyue Selena & Sharp, Basil, 2022. "Climate change impact on the cost of decarbonisation in a hydro-based power system," Energy, Elsevier, vol. 246(C).
    6. Anissa Nurdiawati & Frauke Urban, 2021. "Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies," Energies, MDPI, vol. 14(9), pages 1-33, April.
    7. Deger Saygin & Dolf Gielen, 2021. "Zero-Emission Pathway for the Global Chemical and Petrochemical Sector," Energies, MDPI, vol. 14(13), pages 1-28, June.
    8. Niftiyev, Ibrahim, 2022. "Exclusive Linear Modeling Approach to the Natural Resource Curse in the Azerbaijani Economy: Examples of Stepwise Regression," EconStor Preprints 266036, ZBW - Leibniz Information Centre for Economics.
    9. Aleksandra Jezierska-Thöle & Roman Rudnicki & Łukasz Wiśniewski & Marta Gwiaździńska-Goraj & Mirosław Biczkowski, 2021. "The Agri-Environment-Climate Measure as an Element of the Bioeconomy in Poland—A Spatial Study," Agriculture, MDPI, vol. 11(2), pages 1-19, February.
    10. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    11. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    12. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    13. Mehmet Balcilar & Daberechi Chikezie Ekwueme & Hakki Ciftci, 2023. "Assessing the Effects of Natural Resource Extraction on Carbon Emissions and Energy Consumption in Sub-Saharan Africa: A STIRPAT Model Approach," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    14. Petteri Repo & Kaisa Matschoss, 2019. "Social Innovation for Sustainability Challenges," Sustainability, MDPI, vol. 12(1), pages 1-12, December.
    15. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    16. Andrea Caravaggio & Luigi De Cesare & Andrea Di Liddo, 2023. "A Differential Game for Optimal Water Price Management," Games, MDPI, vol. 14(2), pages 1-15, April.
    17. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    18. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    19. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    20. Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1217-:d:504692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.